Finite-Temperature Equation of State of Polarized Fermions at Unitarity

被引:26
|
作者
Rammelmueller, Lukas [1 ,2 ]
Loheac, Andrew C. [3 ]
Drut, Joaquin E. [3 ]
Braun, Jens [1 ,4 ,5 ]
机构
[1] Tech Univ Darmstadt, Theoriezentrum, Inst Kernphys, D-64289 Darmstadt, Germany
[2] GSI Helmholtzzentrum Schwerionenforsch GmbH, Planckstr 1, D-64291 Darmstadt, Germany
[3] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA
[4] Facil Antiproton & Ion Res Europe GmbH, FAIR, Planckstr 1, D-64291 Darmstadt, Germany
[5] GSI Darmstadt, ExtreMe Matter Inst EMMI, Planckstr 1, D-64291 Darmstadt, Germany
基金
美国国家科学基金会;
关键词
QUANTUM-FIELD THEORIES; VOLUME DEPENDENCE; ENERGY-SPECTRUM; ULTRACOLD GASES; SUPERCONDUCTORS; THERMODYNAMICS; TRANSITION; EXPANSION; LATTICE; QCD;
D O I
10.1103/PhysRevLett.121.173001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study in a nonperturbative fashion the thermodynamics of a unitary Fermi gas over a wide range of temperatures and spin polarizations. To this end, we use the complex Langevin method, a first principles approach for strongly coupled systems. Specifically, we show results for the density equation of state, the magnetization, and the magnetic susceptibility. At zero polarization, our results agree well with state-of-the-art results for the density equation of state and with experimental data. At finite polarization and low fugacity, our results are in excellent agreement with the third-order virial expansion. In the fully quantum mechanical regime close to the balanced limit, the critical temperature for superfluidity appears to depend only weakly on the spin polarization.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] The finite-temperature chiral transition in QCD with adjoint fermions
    Basile, F
    Pelissetto, A
    Vicari, E
    JOURNAL OF HIGH ENERGY PHYSICS, 2005, (02):
  • [2] Localization of Dirac Fermions in Finite-Temperature Gauge Theory
    Giordano, Matteo
    Kovacs, Tamas G.
    UNIVERSE, 2021, 7 (06)
  • [3] Third-order perturbative lattice and complex Langevin analyses of the finite-temperature equation of state of nonrelativistic fermions in one dimension
    Loheac, Andrew C.
    Drut, Joaquin E.
    PHYSICAL REVIEW D, 2017, 95 (09)
  • [5] Nonperturbative finite-temperature Yang-Mills theory
    Cyrol, Anton K.
    Mitter, Mario
    Pawlowski, Jan M.
    Strodthoff, Nils
    PHYSICAL REVIEW D, 2018, 97 (05)
  • [6] Harmonically trapped fermions in one dimension: A finite-temperature lattice Monte Carlo study
    Attanasio, Felipe
    Bauer, Marc
    Kapust, Renzo
    Pawlowski, Jan M.
    PHYSICAL REVIEW A, 2024, 109 (03)
  • [7] Evidence for a Finite-Temperature Insulator
    Ovadia, M.
    Kalok, D.
    Tamir, I.
    Mitra, S.
    Sacepe, B.
    Shahar, D.
    SCIENTIFIC REPORTS, 2015, 5
  • [8] The properties of Tonks Girardeau gas at finite temperature and comparison with spin-polarized fermions
    Hao, Yajiang
    Song, Yafei
    Fu, Xiaochen
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2016, 30 (30):
  • [9] Finite-temperature charge dynamics and the melting of the Mott insulator
    Han, Xing-Jie
    Chen, Chuang
    Chen, Jing
    Xie, Hai-Dong
    Huang, Rui-Zhen
    Liao, Hai-Jun
    Normand, B.
    Meng, Zi Yang
    Xiang, Tao
    PHYSICAL REVIEW B, 2019, 99 (24)
  • [10] QCD at finite temperature and density - Equation of State
    Karthein, Jamie
    30TH INTERNATIONAL CONFERENCE ON ULTRA-RELATIVISTIC NUCLEUS-NUCLEUS COLLISIONS, QUARK MATTER 2023, 2024, 296