Diffusive and inviscid traveling waves of the Fisher equation and nonuniqueness of wave speed

被引:9
|
作者
Hilhorst, Danielle [1 ,2 ]
Kim, Yong-Jung [3 ,4 ]
机构
[1] Univ Paris Saclay, Univ Paris 11, CNRS, F-91405 Orsay, France
[2] Univ Paris Saclay, Univ Paris 11, Math Lab, F-91405 Orsay, France
[3] Korea Adv Inst Sci & Technol, Dept Math Sci, Daejeon 305701, South Korea
[4] Natl Inst Math Sci, 70 Yuseong Daero, Daejeon 305811, South Korea
关键词
Fisher equation; Minimum wave speed; Inviscid traveling waves; PROPAGATION; LIMIT;
D O I
10.1016/j.aml.2016.03.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present an intuitive explanation for the non-uniqueness of the traveling wave speed in the Fisher equation, showing a similar non-uniqueness property in the case of inviscid traveling waves. More precisely, we prove that traveling waves of the Fisher equation with wave speed c > 0 converge to the inviscid traveling wave with speed. c > 0 as the diffusion vanishes. A complete diagram that shows the relation between the diffusive and inviscid traveling waves is given in this paper. (c) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:28 / 35
页数:8
相关论文
共 50 条
  • [31] Wave behavior at the interface of inviscid fluid and NL bio-thermoelastic diffusive media
    Kumar, Rajneesh
    Ghangas, Suniti
    Vashishth, Anil K.
    BIOMATERIALS AND BIOMECHANICS IN BIOENGINEERING, 2022, 6 (01): : 11 - 27
  • [32] The Speed of Traveling Waves in a FKPP-Burgers System
    Bramburger, Jason J.
    Henderson, Christopher
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 241 (02) : 643 - 681
  • [33] Existence of Traveling Waves for the Generalized F–KPP Equation
    Richard Kollár
    Sebastian Novak
    Bulletin of Mathematical Biology, 2017, 79 : 525 - 559
  • [34] Traveling Wave Solutions for Some Classes of Diffusive Predator–Prey Models
    Wei Ding
    Wenzhang Huang
    Journal of Dynamics and Differential Equations, 2016, 28 : 1293 - 1308
  • [35] The periodic traveling waves in a diffusive periodic SIR epidemic model with nonlinear incidence
    Wu, Weixin
    Teng, Zhidong
    CHAOS SOLITONS & FRACTALS, 2021, 144
  • [36] Numerical analysis of the diffusive-viscous wave equation
    Han, Weimin
    Song, Chenghang
    Wang, Fei
    Gao, Jinghuai
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 102 : 54 - 64
  • [38] Turbulent front speed in the Fisher equation: Dependence on Damkohler number
    Brandenburg, Axel
    Haugen, Nils Erland L.
    Babkovskaia, Natalia
    PHYSICAL REVIEW E, 2011, 83 (01)
  • [39] EXACT TRAVELING WAVE SOLUTIONS OF A GENERALIZED KAWAHARA EQUATION
    Nikolova, Elena V.
    Dimitrova, Zlatinka I.
    JOURNAL OF THEORETICAL AND APPLIED MECHANICS-BULGARIA, 2019, 49 (02): : 123 - 135
  • [40] Traveling wave solutions to a reaction-diffusion equation
    Zhaosheng Feng
    Shenzhou Zheng
    David Y. Gao
    Zeitschrift für angewandte Mathematik und Physik, 2009, 60 : 756 - 773