RATIONAL SINGULARITIES OF G-SATURATION

被引:1
作者
Ngo, Nham, V [1 ]
机构
[1] Univ North Georgia, Dept Math, Oakwood, GA 30566 USA
基金
英国工程与自然科学研究理事会;
关键词
Rational resolution (singularities); algebraic groups; G-saturation varieties; commuting varieties; homogeneous bundles; cohomology; NILPOTENT COMMUTING VARIETIES; FLAG VARIETIES; LIE-ALGEBRAS; BUNDLES; COHOMOLOGY; THEOREM;
D O I
10.1216/JCA-2018-10-3-375
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a semisimple algebraic group defined over an algebraically closed field of characteristic 0 and P a parabolic subgroup of G. Let M be a P-module and V a P-stable closed subvariety of M. We show in this paper that, if the varieties V and G . M have rational singularities, and the induction functor R-i ind(P)(G)(-) satisfies certain vanishing conditions, then the variety G . V has rational singularities. This generalizes a result of Kempf [8] on the collapsing of homogeneous bundles. As an application, we prove the property of having rational singularities for nilpotent commuting varieties over 3 x 3 matrices.
引用
收藏
页码:375 / 391
页数:17
相关论文
共 17 条
[1]  
Brion M, 2003, CONTEMP MATH, V331, P13
[2]  
BRUNS W, 1988, LECT NOTES MATH, V1327, P1
[3]   VERY SIMPLE PROOF OF BOTTS THEOREM [J].
DEMAZURE, M .
INVENTIONES MATHEMATICAE, 1976, 33 (03) :271-272
[4]  
Hartshorne R., 1977, ALGEBRAIC GEOM, V52
[5]   NORMALITY OF CLOSURES OF ORBITS IN A LIE-ALGEBRA [J].
HESSELINK, W .
COMMENTARII MATHEMATICI HELVETICI, 1979, 54 (01) :105-110
[6]  
Jantzen J. C., 2003, MATH SURV MONO, V107
[7]   GEOMETRY OF A THEOREM OF RIEMANN [J].
KEMPF, G .
ANNALS OF MATHEMATICS, 1973, 98 (01) :178-185
[8]  
Kempf G. R., 1986, Contemp. Math., V58, P179
[9]   COLLAPSING OF HOMOGENEOUS BUNDLES [J].
KEMPF, GR .
INVENTIONES MATHEMATICAE, 1976, 37 (03) :229-239
[10]  
Kollár J, 2007, ANN MATH STUD, P1