Droplet motion driven by tensotaxis

被引:30
作者
Bueno, Jesus [1 ]
Bazilevs, Yuri [2 ]
Juanes, Ruben [3 ]
Gomez, Hector [4 ]
机构
[1] Univ A Coruna, Dept Metodos Matemat & Representac, Campus Elvia, La Coruna 15192, Spain
[2] Univ Calif San Diego, Dept Struct Engn, 9500 Gilman Dr, La Jolla, CA 92093 USA
[3] MIT, Dept Civil & Environm Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[4] Purdue Univ, Sch Mech Engn, 585 Purdue Mall, W Lafayette, IN 47907 USA
基金
欧洲研究理事会;
关键词
Tensotaxis; Soft materials; Fluid-structure interaction (FSI); Complex fluids; Navier-Stokes-Korteweg equations (NSK); Isogeometric analysis (IGA); WETTABILITY ALTERATION; CONTACT-LINE; SIMULATION; WATER;
D O I
10.1016/j.eml.2017.01.004
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
It is well documented that cells can migrate in response to gradients in stiffness (durotaxis) and gradients in strain (tensotaxis) in the underlying substrate. Understanding the potential physical mechanisms at play during this motion has motivated recent efforts to unravel the role of surface tension in the interaction between droplets and soft solids. Here, we present a multiphysics phase-field model of fluid-solid interaction, which allows us to isolate the effects of strain gradients-something difficult to achieve in experiments. Our high-fidelity numerical simulations in two and three dimensions elucidate the physics of tensotaxis, and show how localized forces in a soft substrate can be used to move and merge droplets deposited on it. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:10 / 16
页数:7
相关论文
共 46 条
  • [1] Diffuse-interface methods in fluid mechanics
    Anderson, DM
    McFadden, GB
    Wheeler, AA
    [J]. ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 : 139 - 165
  • [2] Solid capillarity: when and how does surface tension deform soft solids?
    Andreotti, Bruno
    Baeumchen, Oliver
    Boulogne, Francois
    Daniels, Karen E.
    Dufresne, Eric R.
    Perrin, Hugo
    Salez, Thomas
    Snoeijer, Jacco H.
    Style, Robert W.
    [J]. SOFT MATTER, 2016, 12 (12) : 2993 - 2996
  • [3] Isogeometric fluid-structure interaction: theory, algorithms, and computations
    Bazilevs, Y.
    Calo, V. M.
    Hughes, T. J. R.
    Zhang, Y.
    [J]. COMPUTATIONAL MECHANICS, 2008, 43 (01) : 3 - 37
  • [4] Bazilevs Y., 2013, Computational Fluid-Structure Interaction: Methods and Applications, DOI [DOI 10.1002/9781118483565, 10.1002/9781118483565]
  • [5] Phase-field approach to three-dimensional vesicle dynamics
    Biben, T
    Kassner, K
    Misbah, C
    [J]. PHYSICAL REVIEW E, 2005, 72 (04):
  • [6] Cell organization in soft media due to active mechanosensing
    Bischofs, IB
    Schwarz, US
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (16) : 9274 - 9279
  • [7] Phase-field simulation of solidification
    Boettinger, WJ
    Warren, JA
    Beckermann, C
    Karma, A
    [J]. ANNUAL REVIEW OF MATERIALS RESEARCH, 2002, 32 : 163 - 194
  • [8] Wetting and spreading
    Bonn, Daniel
    Eggers, Jens
    Indekeu, Joseph
    Meunier, Jacques
    Rolley, Etienne
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (02) : 739 - 805
  • [9] Elastocapillary deformations on partially-wetting substrates: rival contact-line models
    Bostwick, Joshua B.
    Shearer, Michael
    Daniels, Karen E.
    [J]. SOFT MATTER, 2014, 10 (37) : 7361 - 7369
  • [10] Interaction of complex fluids and solids: theory, algorithms and application to phase-change-driven implosion
    Bueno, Jesus
    Bona-Casas, Carles
    Bazilevs, Yuri
    Gomez, Hector
    [J]. COMPUTATIONAL MECHANICS, 2015, 55 (06) : 1105 - 1118