Synthesis of iron oxide nanorods for enhanced magnetic hyperthermia

被引:51
|
作者
Nikitin, Aleksey [1 ,2 ]
Khramtsov, Maxim [1 ]
Garanina, Anastasiia [1 ,2 ]
Mogilnikov, Pavel [1 ]
Sviridenkova, Natalya [1 ]
Shchetinin, Igor [1 ]
Savchenko, Alexander [1 ]
Abakumov, Maxim [1 ,3 ]
Majouga, Alexander [2 ,4 ]
机构
[1] Natl Univ Sci & Technol MISIS, Leninskiy Prospect 4, Moscow 119991, Russia
[2] Lomonosov Moscow State Univ, Dept Chem, Leninskiye Gory 1-3,GSP 1, Moscow 119991, Russia
[3] Pirogov Russian Natl Res Med Univ, Ostrovityanova 1, Moscow 117997, Russia
[4] Dmitry Mendeleev Univ Chem Technol Russia, Miusskaya Sq 9, Moscow 125047, Russia
关键词
Nanoparticles; Iron oxide; Nanorods; Hyperthermia; ABSORPTION RATE; NANOPARTICLES; CELLS; SHAPE; SIZE; MRI;
D O I
10.1016/j.jmmm.2018.09.014
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magnetic hyperthermia is one of the most effective methods for treatment of cancer. In this work we discuss synthesis of magnetic iron oxide nanorods (IONRds) and their application for enhanced magnetic hyperthermia. By microwave irradiation the monodisperse water-soluble IONRds with clear morphology were obtained. Magnetic measurements showed that such IONRds have high value of coercivity (141 Oe). Moreover, hyperthermia experiments with synthesized samples were carried out. At the frequency and field strength of alternating magnetic field (AMF) f = 261 kHz H = 20 kA m(-1) the specific absorption rate (SAR) and intrinsic loss power (ILP) values were equal to 147 W g(-1) and 1.4 nHm(2) kg(-1) respectively, which confirms the efficiency of synthesized nanorods in hyperthermia applications.
引用
收藏
页码:443 / 449
页数:7
相关论文
共 50 条
  • [41] Magnetic hyperthermia properties of iron oxide nanoparticles: The effect of concentration
    Ebrahimisadr, Saeid
    Aslibeiki, Bagher
    Asadi, Reza
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2018, 549 : 119 - 121
  • [42] Energy Transfer from Magnetic Iron Oxide Nanoparticles: Implications for Magnetic Hyperthermia
    Tabacchi, Gloria
    Armenia, Ilaria
    Bernardini, Giovanni
    Masciocchi, Norberto
    Guagliardi, Antonietta
    Fois, Ettore
    ACS APPLIED NANO MATERIALS, 2023, 6 (14) : 12914 - 12921
  • [43] Inductive calorimetric assessment of iron oxide nano-octahedrons for magnetic fluid hyperthermia
    Rajan, Arunima S.
    Sahu, Niroj Kumar
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2020, 603
  • [44] Phase structure dependence of magnetic behaviour in iron oxide nanorods
    Hu, Hailong
    Yuan, Yuan
    Lim, Sean
    Wang, Chun H.
    MATERIALS & DESIGN, 2020, 185
  • [45] Evaluating PVP coated iron oxide particles for localized magnetic hyperthermia and MRI imaging
    Milic, Mirjana M.
    Orsini, Natasa Jovic
    Pozek, Miroslav
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2024, 130 (05):
  • [46] Shaping iron oxide nanocrystals for magnetic separation applications
    Testa-Anta, Martin
    Liebana-Vinas, Sara
    Rivas-Murias, Beatriz
    Rodriguez Gonzalez, Benito
    Farle, Michael
    Salgueirino, Veronica
    NANOSCALE, 2018, 10 (43) : 20462 - 20467
  • [47] Combination Using Magnetic Iron Oxide Nanoparticles and Magnetic Field for Cancer Therapy
    Sun, Wenjun
    Chai, Xiaoxia
    Zhang, Yuan
    Yu, Tongyao
    Wang, Yuhua
    Zhao, Wenzhe
    Liu, Yanhua
    Yin, Dachuan
    Zhang, Chenyan
    CHEMICAL RECORD, 2024, 24 (12)
  • [48] Synthesis of iron oxide/manganese oxide composite particles and their magnetic properties
    Ullrich, Aladin
    Hohenberger, Stefan
    Oezden, Ayberk
    Horn, Siegfried
    JOURNAL OF NANOPARTICLE RESEARCH, 2014, 16 (08)
  • [49] Synthesis, structure and magnetic properties of iron-doped tungsten oxide nanorods
    Si, P. Z.
    Choi, C. J.
    Bruck, E.
    Klaasse, J. C. P.
    Geng, D. Y.
    Zhang, Z. D.
    PHYSICA B-CONDENSED MATTER, 2007, 392 (1-2) : 154 - 158
  • [50] Synthesis of Magnetic Nanopowders of Iron Oxide: Magnetite and Maghemite
    Shilova, O. A.
    Nikolaev, A. M.
    Kovalenko, A. S.
    Sinel'nikov, A. A.
    Kopitsa, G. P.
    Baranchikov, A. E.
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2020, 65 (03) : 426 - 430