Prior Image-Constrained Reconstruction using Style-Based Generative Models

被引:0
作者
Kelkar, Varun A. [1 ]
Anastasio, Mark A. [1 ]
机构
[1] Univ Illinois, Urbana, IL 61801 USA
来源
INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139 | 2021年 / 139卷
关键词
INFORMATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Obtaining a useful estimate of an object from highly incomplete imaging measurements remains a holy grail of imaging science. Deep learning methods have shown promise in learning object priors or constraints to improve the conditioning of an ill-posed imaging inverse problem. In this study, a framework for estimating an object of interest that is semantically related to a known prior image, is proposed. An optimization problem is formulated in the disentangled latent space of a style-based generative model, and semantically meaningful constraints are imposed using the disentangled latent representation of the prior image. Stable recovery from incomplete measurements with the help of a prior image is theoretically analyzed. Numerical experiments demonstrating the superior performance of our approach as compared to related methods are presented.
引用
收藏
页数:11
相关论文
共 39 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   Image2StyleGAN: How to Embed Images Into the StyleGAN Latent Space? [J].
Abdal, Rameen ;
Qin, Yipeng ;
Wonka, Peter .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :4431-4440
[3]  
Abu Hussein S, 2020, AAAI CONF ARTIF INTE, V34, P3121
[4]   BREAKING THE COHERENCE BARRIER: A NEW THEORY FOR COMPRESSED SENSING [J].
Adcock, Ben ;
Hansen, Anders C. ;
Poon, Clarice ;
Roman, Bogdan .
FORUM OF MATHEMATICS SIGMA, 2017, 5 :1-84
[5]  
[Anonymous], 2021, PR MACH LEARN RES
[6]  
[Anonymous], **DATA OBJECT**, DOI DOI 10.7937/K9/TCIA.2018.15QUZVNB
[7]  
Asim M., 2020, P 37 INT C MACHINE L, V119, P399
[8]  
Barrett H. H., 2013, Foundations of image science
[9]   Online Sequential Compressed Sensing With Multiple Information for Through-the-Wall Radar Imaging [J].
Becquaert, Mathias ;
Cristofani, Edison ;
Lauwens, Ben ;
Vandewal, Marijke ;
Stiens, Johan H. ;
Deligiannis, Nikos .
IEEE SENSORS JOURNAL, 2019, 19 (11) :4138-4148
[10]   On Hallucinations in Tomographic Image Reconstruction [J].
Bhadra, Sayantan ;
Kelkar, Varun A. ;
Brooks, Frank J. ;
Anastasio, Mark A. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (11) :3249-3260