Two-parameter nonlinear Sturm-Liouville problems

被引:3
作者
Shibata, T [1 ]
机构
[1] Hiroshima Univ, Fac Integrated Arts & Sci, Div Math & Informat Sci, Higashihiroshima 739, Japan
关键词
D O I
10.1017/S0013091500019611
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study two-parameter nonlinear Sturm-Liouville problems. We shall establish the continuity of the variational eigencurve lambda(mu) and asymptotic formulas of lambda(mu) as mu --> infinity, mu --> pi(2).
引用
收藏
页码:225 / 245
页数:21
相关论文
共 23 条
[1]   EXISTENCE AND MULTIPLICITY THEOREMS FOR SEMI-LINEAR ELLIPTIC BOUNDARY-VALUE PROBLEMS [J].
AMANN, H .
MATHEMATISCHE ZEITSCHRIFT, 1976, 150 (03) :281-295
[2]   NUMBER OF SOLUTIONS OF CERTAIN SEMI-LINEAR ELLIPTIC PROBLEMS [J].
BERESTYCKI, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 1981, 40 (01) :1-29
[3]   ASYMPTOTICS OF EIGENCURVES FOR 2ND-ORDER ORDINARY DIFFERENTIAL-EQUATIONS .2. [J].
BINDING, P ;
BROWNE, PJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 89 (02) :224-243
[4]   Eigencurves for two-parameter Sturm-Liouville equations [J].
Binding, P ;
Volkmer, H .
SIAM REVIEW, 1996, 38 (01) :27-48
[5]   ASYMPTOTICS OF EIGENCURVES FOR 2ND-ORDER ORDINARY DIFFERENTIAL-EQUATIONS .1. [J].
BINDING, P ;
BROWNE, PJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 88 (01) :30-45
[6]  
Brezis H., 1983, Analyse Fonctionnelle-Theorie et Applications
[7]   NON-LINEAR MULTI-PARAMETER EIGENVALUE PROBLEMS FOR ORDINARY DIFFERENTIAL-EQUATIONS [J].
BROWNE, PJ ;
SLEEMAN, BD .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1980, 77 (02) :425-432
[8]   NON-LINEAR MULTI-PARAMETER STURM-LIOUVILLE PROBLEMS [J].
BROWNE, PJ ;
SLEEMAN, BD .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1979, 34 (01) :139-146
[9]  
BROWNE PJ, 1980, GLASGOW MATH J, V21, P85
[10]  
Chow S-N., 2012, METHODS BIFURCATION