Optical solitons for perturbed Gerdjikov-Ivanov equation

被引:53
作者
Kaur, Lakhveer [1 ]
Wazwaz, Abdul-Majid [2 ]
机构
[1] Jaypee Inst Informat Technol, Dept Math, Noida, UP, India
[2] St Xavier Univ, Dept Math, Chicago, IL 60655 USA
来源
OPTIK | 2018年 / 174卷
关键词
Perturbed Gerdjikov-Ivanov equation; Optical solitons exp(-phi(xi))-expansion method; (G '/G(2))-expansion method; INTEGRABLE SYSTEMS; FORM;
D O I
10.1016/j.ijleo.2018.08.072
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The current article investigates the optical solitons for the perturbed Gerdjikov-Ivanov equation. The algorithms namely: exp(-phi(xi))-expansion method and (G'/G(2))-aexpansion method are adopted for the aforementioned equation. As a result, we formally derive hyperbolic, trigonometric or rational function solutions. The acquired solutions leads to diverse types of optical solitons by stipulating the free parameters along with requisite limitations that ensures the sustainability of such optical solitons.
引用
收藏
页码:447 / 451
页数:5
相关论文
共 22 条
[1]   Optical soliton perturbation with full nonlinearity for Gerdjikov-Ivanov equation by trial equation method [J].
Biswas, Anjan ;
Yildirim, Yakup ;
Yasar, Emrullah ;
Triki, Houria ;
Alshomrani, Ali Saleh ;
Ullah, Malik Zaka ;
Zhou, Qin ;
Moshokoa, Seithuti P. ;
Belic, Milivoj .
OPTIK, 2018, 157 :1214-1218
[2]   Conservation laws for Gerdjikov-Ivanov equation in nonlinear fiber optics and PCF [J].
Biswas, Anjan ;
Yildirim, Yakup ;
Yasar, Emrullah ;
Babatin, M. M. .
OPTIK, 2017, 148 :209-214
[3]   Variable separation and algebro-geometric solutions of the Gerdjikov-lvanov equation [J].
Dai, HH ;
Fan, EG .
CHAOS SOLITONS & FRACTALS, 2004, 22 (01) :93-101
[4]   Integrable evolution systems based on Gerdjikov-Ivanov equations, bi-Hamiltonian structure, finite-dimensional integrable systems and N-fold Darboux transformation [J].
Fan, EG .
JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (11) :7769-7782
[5]  
Gerdjikov V. S., 1983, Bulgarian Journal of Physics, V10, P130
[6]  
Gu C, 1995, SOLITON THEORY ITS A
[7]   Two expanding integrable systems of the GI soliton hierarchy and a generalized GI hierarchy with self-consistent sources as well as its extension form [J].
Guo, Xiurong .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (12) :4065-4070
[8]   Bifurcations and new exact travelling wave solutions for the Gerdjikov-Ivanov equation [J].
He, Bin ;
Meng, Qing .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (07) :1783-1790
[9]  
Kaur L, 2018, ROM REP PHYS, V70
[10]   Dynamical analysis of lump solutions for (3+1) dimensional generalized KP-Boussinesq equation and Its dimensionally reduced equations [J].
Kaur, Lakhveer ;
Wazwaz, Abdul-Majid .
PHYSICA SCRIPTA, 2018, 93 (07)