A direct O(Nlog2N) finite difference method for fractional diffusion equations

被引:306
作者
Wang, Hong [1 ,2 ]
Wang, Kaixin [1 ]
Sircar, Treena [2 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
[2] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
基金
美国国家科学基金会;
关键词
Anomalous diffusion; Circulant and Toeplitz matrices; Fast finite difference methods; Fast Fourier transform; Fractional diffusion equations; NUMERICAL APPROXIMATION; SPACE; TRANSPORT; STABILITY;
D O I
10.1016/j.jcp.2010.07.011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Fractional diffusion equations model phenomena exhibiting anomalous diffusion that can not be modeled accurately by the second-order diffusion equations. Because of the non-local property of fractional differential operators, the numerical methods have full coefficient matrices which require storage of O(N-2) and computational cost of O(N-3) where N is the number of grid points. In this paper we develop a fast finite difference method for fractional diffusion equations, which only requires storage of O(N) and computational cost of O( Nlog(2)N) while retaining the same accuracy and approximation property as the regular finite difference method. Numerical experiments are presented to show the utility of the method. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:8095 / 8104
页数:10
相关论文
共 39 条
[21]   Finite difference approximations for two-sided space-fractional partial differential equations [J].
Meerschaert, MM ;
Tadjeran, C .
APPLIED NUMERICAL MATHEMATICS, 2006, 56 (01) :80-90
[22]   Finite difference methods for two-dimensional fractional dispersion equation [J].
Meerschaert, MM ;
Scheffler, HP ;
Tadjeran, C .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 211 (01) :249-261
[23]   Finite difference approximations for fractional advection-dispersion flow equations [J].
Meerschaert, MM ;
Tadjeran, C .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 172 (01) :65-77
[24]  
METIER R, 2004, J PHYS A, V161, pR208
[25]   The random walk's guide to anomalous diffusion: a fractional dynamics approach [J].
Metzler, R ;
Klafter, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 339 (01) :1-77
[26]   Implicit finite difference approximation for time fractional diffusion equations [J].
Murio, Diego A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (04) :1138-1145
[27]  
OLDHAM KB, 1974, ACAD PRESS
[28]  
PODLUBNY I, 1999, ACAD PRESS
[29]   Waiting-times and returns in high-frequency financial data: an empirical study [J].
Raberto, M ;
Scalas, E ;
Mainardi, F .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 314 (1-4) :749-755
[30]   Waiting time distributions in financial markets [J].
Sabatelli, L ;
Keating, S ;
Dudley, J ;
Richmond, P .
EUROPEAN PHYSICAL JOURNAL B, 2002, 27 (02) :273-275