A literature research on the performance evaluation of hydrate-based CO2 capture and separation process

被引:23
|
作者
He, Junnan [1 ]
Liu, Yinan [1 ]
Ma, Zhiwei [2 ]
Deng, Shuai [1 ]
Zhao, Ruikai [1 ]
Zhao, Li [1 ]
机构
[1] Tianjin Univ, Minist Educ China, Key Lab Efficient Utilizat Low & Medium Grade Ene, Tianjin 300072, Peoples R China
[2] Newcastle Univ, Sir Joseph Swan Ctr Energy Res, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
关键词
Hydrate-based CO2 capture; Chemical additives; Capture process; CO2; recovery; Separation factor; SIMULATED FLUE-GAS; CARBON-DIOXIDE; TETRAHYDROFURAN; COLUMN;
D O I
10.1016/j.egypro.2017.03.867
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Hydrate-based CO2 capture (HBCC) technology, which is a promising alternative method to CO2 capture, has received increasing attention in recent decades as it has mild operating conditions and unique separation mechanism. This paper summarises several available methods on improving the separation performance of HBCC technology, mainly including chemical additives and improvement of capture process. The chemical additives are generally divided into two classes: thermodynamic promoters (THF, TBAB, TBAF, CP, C3H8) and kinetic promoters (SDS, DTAC). In addition to the common single stage process, the multistage process and hybrid conceptual process coupled with membrane separation are developed to obtain more concentrated CO2. Then the evaluation indicators of separation performance are introduced: CO2 recovery and separation factor. Moreover, the separation performance of CO2 capture from either post-combustion flue gas or pre-combustion fuel gas is discussed and the development direction in the future is highlighted as well. (C) 2017 The Authors. Published by Elsevier Ltd.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Hydrate-Based CO2 Capture through Nano Dry Gels plus Tetrahydrofuran - A Kinetic and Thermodynamic Study
    Golkhou, Fatemeh
    Haghtalab, Ali
    CHEMICAL ENGINEERING & TECHNOLOGY, 2021, 44 (12) : 2290 - 2299
  • [42] Hydrate-based desalination process using CO2 as hydrate forming agent - Modelling and techno-economic analysis
    Fernandes, Isabel S.
    Domingos, Mariana G.
    Costa, Marcelo F.
    Santos, Ricardo J.
    Lopes, Jose Carlos B.
    DESALINATION, 2025, 599
  • [43] CO2 nanobubbles as a novel kinetic promoter in hydrate-based desalination
    Montazeri, Seyed Mohammad
    Kalogerakis, Nicolas
    Kolliopoulos, Georgios
    DESALINATION, 2024, 574
  • [44] A Comparative Study of Hydrate-Based CO2 Sequestration at Different Scales
    Pang, Weixin
    Chen, Mingqiang
    Fu, Qiang
    Ge, Yang
    Zhang, Xiaohan
    Wen, Huiyun
    Zhou, Shouwei
    Li, Qingping
    ENERGY & FUELS, 2024, 38 (17) : 16599 - 16609
  • [45] High-efficiency CO2 capture and separation based on hydrate technology: A review
    Li, Airong
    Wang, Jie
    Bao, Buping
    GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2019, 9 (02): : 175 - 193
  • [46] Thermodynamic investigation of hydrate-based CO2 capture from simulated flue gas with new mixed promoters
    Bai, Jing
    Cheng, Canwei
    Wei, Yuanxia
    Yan, Kele
    Li, Pan
    Fang, Shuqi
    Chang, Chun
    INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING, 2021, 19 (01) : 75 - 85
  • [47] Comparison of SDS and L-Methionine in promoting CO2 hydrate kinetics: Implication for hydrate-based CO2 storage
    Liu, Xuejian
    Ren, Junjie
    Chen, Daoyi
    Yin, Zhenyuan
    Chemical Engineering Journal, 2022, 438
  • [48] Anti-Agglomerator of Tetra-n-Butyl Ammonium Bromide Hydrate and Its Effect on Hydrate-Based CO2 Capture
    Li, Rong
    Li, Xiao-Sen
    Chen, Zhao-Yang
    Zhang, Yu
    Xu, Chun-Gang
    Xia, Zhi-Ming
    ENERGIES, 2018, 11 (02)
  • [49] Improvement of continuous hydrate-based CO2 separation by forming structure II hydrate in the system of H2 + CO2 + H2O + Tetrahydropyran (THP)
    Kiyokawa, Hitoshi
    Horii, Shunsuke
    Alavi, Saman
    Ohmura, Ryo
    FUEL, 2020, 278
  • [50] Comparison of SDS and L-Methionine in promoting CO2 hydrate kinetics: Implication for hydrate-based CO2 storage
    Liu, Xuejian
    Ren, Junjie
    Chen, Daoyi
    Yin, Zhenyuan
    CHEMICAL ENGINEERING JOURNAL, 2022, 438