Role of Separator Surface Polarity in Boosting the Lithium-Ion Transport Property for a Lithium-Based Battery

被引:27
|
作者
Sheng, Lei [1 ]
Xie, Xin [1 ]
Sun, Zhipeng [1 ]
Zhao, Manman [1 ]
Gao, Bin [1 ]
Pan, Junjie [1 ]
Bai, Yaozong [2 ]
Song, Shangjun [2 ]
Liu, Gaojun [2 ]
Wang, Tao [1 ]
Huang, Xianli [1 ]
He, Jianping [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Mat Sci & Technol, Nanjing 210016, Jiangsu, Peoples R China
[2] Sinoma Lithium Battery Separator Co Ltd, Zaozhuang 277599, Shandong, Peoples R China
来源
ACS APPLIED ENERGY MATERIALS | 2021年 / 4卷 / 05期
基金
中国国家自然科学基金;
关键词
PE-g-SiO separator; grafting reaction; surface polarity; lithium anode; battery performance; STATE; ELECTROLYTES; PARTICLES; CHEMISTRY; VOLTAGE;
D O I
10.1021/acsaem.1c00737
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The separator is a significant safety component inside the lithium-based battery. To design a higher-power-density system, a functional separator has attracted more attention. In our study, vinyl trimethoxysilane (VTMS) has been directly grafted onto a polyethylene (PE) separator by.-irradiation. We have evaluated the performance of a PE separator grafted with VTMS (PE-g-SiH) and its basic hydrolysis separator (PE-g-SiO) in detail and have discussed the role of separator surface polarity in the ion transport process. The consequence shows that the lithium-ion transference number of the PE-g-SiO separator is 0.38, superior than 0.27 of a pure PE separator and 0.29 of a PE-g-SiH separator. It can be a reason that the LiCoO2/Li cell with a PE-g-SiO separator shows excellent cycle stability and rate performance. Furthermore, in the case of a PE-g-SiO separator, the Li/Li symmetric model possesses the lowest activation energy of 55.2 kJ mol(-1), indicating that lithium ions migrate easily at the interface of electrodes and a separator filled with liquid electrolyte. It is attributed to the improved interaction between the separator wall and solvent, which is in favor of lithium-ion-selective transport. Hence, separator functionalization is expected to enhance the battery performance further.
引用
收藏
页码:5212 / 5221
页数:10
相关论文
共 50 条
  • [21] Lithium-based draw solute for forward osmosis to treat wastewater discharged from lithium-ion battery manufacturing
    Rongzhen Chen
    Xinfei Dong
    Qingchun Ge
    Frontiers of Chemical Science and Engineering, 2022, 16 : 755 - 763
  • [22] A heatproof separator for lithium-ion battery based on nylon66 nanofibers
    Haolun Wang
    Ning Wang
    Tao Liu
    Chunsong Zhao
    Xi Luo
    Lifang Zhang
    Yulei Chang
    Hui Wu
    Ionics, 2016, 22 : 731 - 734
  • [23] Composite nonwoven separator for lithium-ion battery: Development and characterization
    Cho, Tae-Hyung
    Tanaka, Masanao
    Ohnishi, Hiroshi
    Kondo, Yuka
    Yoshikazu, Miyata
    Nakamura, Tatsuo
    Sakai, Tetsuo
    JOURNAL OF POWER SOURCES, 2010, 195 (13) : 4272 - 4277
  • [24] Global Patent Analysis of Power Lithium-Ion Battery Separator
    Li, Na
    Guan, Quan
    Tan, Siming
    Wang, Yunfei
    Chu, Zhiyong
    Liu, Jin
    2015 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEM), 2015, : 957 - 961
  • [25] Multiphysics simulation of the effect of compressed separator on lithium-ion battery
    Hu, Qingyang
    Sheng, Lei
    Xie, Xin
    Yang, Ling
    Gao, Xingxu
    Li, Datuan
    Bai, Yaozong
    Liu, Gaojun
    Dong, Haoyu
    Wang, Tao
    Huang, Xianli
    He, Jianping
    SOLID STATE IONICS, 2024, 406
  • [26] Surface-modified composite separator for lithium-ion battery with enhanced durability and security
    Wangbing Yao
    Xiaodong He
    Zhuoyuan Zheng
    Dongming Liu
    Jinbao Song
    Yusong Zhu
    ProgressinNaturalScience:MaterialsInternational, 2023, 33 (06) : 804 - 811
  • [27] Surface-modified composite separator for lithium-ion battery with enhanced durability and security
    Yao, Wangbing
    He, Xiaodong
    Zheng, Zhuoyuan
    Liu, Dongming
    Song, Jinbao
    Zhu, Yusong
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2023, 33 (06) : 804 - 811
  • [28] Lithium-Ion Battery
    Bullis, Kevin
    TECHNOLOGY REVIEW, 2012, 115 (04) : 79 - 79
  • [29] Polyethylene separator activated by γ-ray irradiation for improving lithium-based battery performance
    Sheng, Lei
    Zhang, Ying
    Xie, Xin
    Wu, Haowen
    Yang, Ling
    Gao, Xingxu
    Bai, Yaozong
    Dong, Haoyu
    Liu, Gaojun
    Wang, Tao
    Huang, Xianli
    He, Jianping
    JOURNAL OF MATERIALS SCIENCE, 2021, 56 (36) : 20026 - 20036
  • [30] Polyethylene separator activated by γ-ray irradiation for improving lithium-based battery performance
    Lei Sheng
    Ying Zhang
    Xin Xie
    Haowen Wu
    Ling Yang
    Xingxu Gao
    Yaozong Bai
    Haoyu Dong
    Gaojun Liu
    Tao Wang
    Xianli Huang
    Jianping He
    Journal of Materials Science, 2021, 56 : 20026 - 20036