Weighted completion of Galois groups and Galois actions on the fundamental group of P1-{0, 1, ∞}

被引:34
作者
Hain, R
Matsumoto, M
机构
[1] Duke Univ, Dept Math, Durham, NC 27708 USA
[2] Hiroshima Univ, Fac Sci, Dept Math, Higashihiroshima 7398526, Japan
基金
美国国家科学基金会;
关键词
Galois cohomology; Galois group; mixed Tate motive; Tannakian category; weighted completion;
D O I
10.1023/B:COMP.0000005077.42732.93
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fix a prime number l. We prove a conjecture stated by Ihara, which he attributes to Deligne, about the action of the absolute Galois group on the pro-l completion of the fundamental group of the thrice punctured projective line. Similar techniques are also used to prove part of a conjecture of Goncharov, also about the action of the absolute Galois group on the fundamental group of the thrice punctured projective line. The main technical tool is the weighted completion of a profinite group with respect to a reductive representation ( and other appropriate data).
引用
收藏
页码:119 / 167
页数:49
相关论文
共 24 条
[1]  
BLOCH S, 1990, PROG MATH, V86, P333
[2]  
DELIGNE P, 1971, PUBL MATH IHES, V40, P5
[3]  
DELIGNE P., 1989, MSRI PUBL, V16, P79, DOI [10.1007/978-1-4613-9649-9_3, DOI 10.1007/978-1-4613-9649-93]
[4]  
Drinfeld V.G., 1991, Leningrad Math. J., V2, P829
[6]   Volumes of hyperbolic manifolds and mixed Tate motives [J].
Goncharov, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (02) :569-618
[7]  
Goncharov AB, 2001, PROG MATH, V201, P361
[8]  
Hain R., 1993, Contemporary Math, V150, P75
[9]   The Hodge de Rham theory of relative Malcev completion [J].
Hain, RM .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1998, 31 (01) :47-92
[10]   PROFINITE BRAID-GROUPS, GALOIS REPRESENTATIONS AND COMPLEX MULTIPLICATIONS [J].
IHARA, Y .
ANNALS OF MATHEMATICS, 1986, 123 (01) :43-106