Quantum Dot-Sensitized Photoreduction of CO2 in Water with Turnover Number > 80,000

被引:112
作者
Arcudi, Francesca [1 ,2 ]
Dordevic, Luka [1 ,2 ]
Nagasing, Benjamin [1 ]
Stupp, Samuel, I [3 ,4 ,5 ,6 ]
Weiss, Emily A. [1 ,2 ,7 ]
机构
[1] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[2] Northwestern Univ, Ctr Bioinspired Energy Sci, Chicago, IL 60611 USA
[3] Northwestern Univ, Dept Chem, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[4] Northwestern Univ, Dept Biomed Engn, Evanston, IL 60208 USA
[5] Northwestern Univ, Ctr Bioinspired Energy Sci, Dept Med, Chicago, IL 60611 USA
[6] Northwestern Univ, Simpson Querrey Inst, Chicago, IL 60611 USA
[7] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
关键词
VISIBLE-LIGHT; HIGHLY EFFICIENT; CARBON-DIOXIDE; ELECTROCHEMICAL REDUCTION; PHOTOCATALYTIC REDUCTION; CATALYST; IRON; NANOCRYSTALS; AMINE; CAPTURE;
D O I
10.1021/jacs.1c06961
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Climate change and global energy demands motivate the search for sustainable transformations of carbon dioxide (CO2) to storable liquid fuels. Photocatalysis is a pathway for direct conversion of CO2 to CO, one step within light-powered reaction networks that could, if efficient enough, transform the solar energy conversion landscape. To date, the best performing photocatalytic CO2 reduction systems operate in nonaqueous solvents, but technologically viable solar fuels networks will likely operate in water. Here we demonstrate catalytic photoreduction of CO2 to CO in pure water at pH 6-7 with an unprecedented combination of performance parameters: turnover number (TON-(CO)) = 72,484-84,101, quantum yield (QY) = 0.96-3.39%, and selectivity (S-CO) > 99%, using CuInS2 colloidal quantum dots (QDs) as photosensitizers and a Co-porphyrin catalyst. At higher catalyst concentration, the system reaches QY = 3.53-5.23%. The performance of the QD-driven system greatly exceeds that of the benchmark aqueous system (926 turnovers with a quantum yield of 0.81% and selectivity of 82%), due primarily to (i) electrostatic attraction of the QD to the catalyst, which promotes fast multielectron delivery and colocalization of protons, CO2, and catalyst at the source of photoelectrons, and (ii) termination of the QD's ligand shell with free amines, which capture CO2 as carbamic acid that serves as a reservoir for CO2, effectively increasing its solubility in water, and lowers the onset potential for catalytic CO2 reduction by the Co-porphyrin. The breakthrough efficiency achieved in this work represents a nonincremental step in the realization of reaction networks for direct solar-to-fuel conversion.
引用
收藏
页码:18131 / 18138
页数:8
相关论文
共 70 条
[1]   Nanotechnology for catalysis and solar energy conversion [J].
Banin, U. ;
Waiskopf, N. ;
Hammarstrom, L. ;
Boschloo, G. ;
Freitag, M. ;
Johansson, E. M. J. ;
Sa, J. ;
Tian, H. ;
Johnston, M. B. ;
Herz, L. M. ;
Milot, R. L. ;
Kanatzidis, M. G. ;
Ke, W. ;
Spanopoulos, I ;
Kohlstedt, K. L. ;
Schatz, G. C. ;
Lewis, N. ;
Meyer, T. ;
Nozik, A. J. ;
Beard, M. C. ;
Armstrong, F. ;
Megarity, C. F. ;
Schmuttenmaer, C. A. ;
Batista, V. S. ;
Brudvig, G. W. .
NANOTECHNOLOGY, 2021, 32 (04)
[2]   Thermodynamic Considerations for Optimizing Selective CO2 Reduction by Molecular Catalysts [J].
Barlow, Jeffrey M. ;
Yang, Jenny Y. .
ACS CENTRAL SCIENCE, 2019, 5 (04) :580-588
[3]   Ether Functionalized Choline Tethered Amino Acid Ionic Liquids for Enhanced CO2 Capture [J].
Bhattacharyya, Shubhankar ;
Shah, Faiz Ullah .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2016, 4 (10) :5441-5449
[4]   Selective Photocatalytic CO2 Reduction in Water by Electrostatic Assembly of CdS Nanocrystals with a Dinuclear Cobalt Catalyst [J].
Bi, Qian-Qian ;
Wang, Jia-Wei ;
Lv, Jia-Xin ;
Wang, Juan ;
Zhang, Wen ;
Lu, Tong-Bu .
ACS CATALYSIS, 2018, 8 (12) :11815-11821
[5]   Molecular Electrochemical Reduction of CO2 beyond Two Electrons [J].
Boutin, Etienne ;
Robert, Marc .
TRENDS IN CHEMISTRY, 2021, 3 (05) :359-372
[6]   Semiconductor nanocrystal photocatalysis for the production of solar fuels [J].
Burke, Rebeckah ;
Bren, Kara L. ;
Krauss, Todd D. .
JOURNAL OF CHEMICAL PHYSICS, 2021, 154 (03)
[7]   What Should We Make with CO2 and How Can We Make It? [J].
Bushuyev, Oleksandr S. ;
De Luna, Phil ;
Cao Thang Dinh ;
Tao, Ling ;
Saur, Genevieve ;
van de lagemaat, Jao ;
Kelley, Shana O. ;
Sargent, Edward H. .
JOULE, 2018, 2 (05) :825-832
[8]   Highly Efficient and Selective Photocatalytic CO2 Reduction to CO in Water by a Cobalt Porphyrin Molecular Catalyst [J].
Call, Arnau ;
Cibian, Mihaela ;
Yamamoto, Keiya ;
Nakazono, Takashi ;
Yamauchi, Kosei ;
Sakai, Ken .
ACS CATALYSIS, 2019, 9 (06) :4867-4874
[9]   Efficient trinuclear Ru(ii)-Re(i) supramolecular photocatalysts for CO2 reduction based on a new tris-chelating bridging ligand built around a central aromatic ring [J].
Cancelliere, Ambra M. M. ;
Puntoriero, Fausto ;
Serroni, Scolastica ;
Campagna, Sebastiano ;
Tamaki, Yusuke ;
Saito, Daiki ;
Ishitani, Osamu .
CHEMICAL SCIENCE, 2020, 11 (06) :1556-1563
[10]   Directing the reactivity of metal hydrides for selective CO2 reduction [J].
Ceballos, Bianca M. ;
Yang, Jenny Y. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (50) :12686-12691