Sulfur Copolymer: A New Cathode Structure for Room-Temperature Sodium-Sulfur Batteries

被引:126
作者
Ghosh, Arnab [1 ]
Shukla, Swapnil [2 ]
Monisha, Monisha [2 ]
Kumar, Ajit [1 ]
Lochab, Bimlesh [2 ]
Mitra, Sagar [1 ]
机构
[1] Indian Inst Technol, Dept Energy Sci & Engn, Electrochem Energy Lab, Bombay 400076, Maharashtra, India
[2] Shiv Nadar Univ, Sch Nat Sci, Dept Chem, Mat Chem Lab, Gautam Buddha Nagar 201314, Uttar Pradesh, India
来源
ACS ENERGY LETTERS | 2017年 / 2卷 / 10期
关键词
LI-S BATTERIES; TRANSITION IN-SITU; AMBIENT-TEMPERATURE; INVERSE VULCANIZATION; RAMAN-SPECTROSCOPY; CYCLING STABILITY; ELEMENTAL SULFUR; LITHIUM; CARBON; POLYMERIZATION;
D O I
10.1021/acsenergylett.7b00714
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High-energy electrochemical storage containing earth abundant materials could be a choice for future battery development. Recent research reports indicated the possibility of room-temperature sodium-ion sulfur chemistry for large storage including smart grids. Here, we report a room-temperature sodium sulfur battery cathode that will address the native downsides of a sodium sulfur battery, such as polysulfide shuttling and low electrical conductivity of elemental sulfur. In this Letter, we use a sustainable route which ensures a large sulfur confinement (i.e., similar to 90 wt %) in the cathode structure. The sulfur-embedded polymer is realized via thermal ring-opening polymerization of benzoxazine in the presence of elemental sulfur (CS90) and later composite with reduced graphene oxide (rGO). The resulting CS90 allows a homogeneous distribution of sulfur due to in situ formation of the polymer backbone and allows maximum utilization of sulfur. This unique electrode structure bestows CS90 rGO with an excellent Coulombic efficiency (99%) and healthy cycle life.
引用
收藏
页码:2478 / 2485
页数:8
相关论文
共 37 条
[1]   Shuttle suppression in room temperature sodium-sulfur batteries using ion selective polymer membranes [J].
Bauer, I. ;
Kohl, M. ;
Althues, H. ;
Kaskel, S. .
CHEMICAL COMMUNICATIONS, 2014, 50 (24) :3208-3210
[2]  
Beamson G., 1993, J. Chem. Educ, V70, pA25, DOI [10.1021/ed070pA25.5, 10.1021/ed070pA25.5.A25, DOI 10.1021/ED070PA25.5]
[3]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[4]   A Sugar-Derived Room-Temperature Sodium Sulfur Battery with Long Term Cycling Stability [J].
Carter, Rachel ;
Oakes, Landon ;
Douglas, Anna ;
Muralidharan, Nitin ;
Cohn, Adam P. ;
Pint, Cary L. .
NANO LETTERS, 2017, 17 (03) :1863-1869
[5]   A nitrogen doped carbonized metal-organic framework for high stability room temperature sodium-sulfur batteries [J].
Chen, Yu-Ming ;
Liang, Wenfeng ;
Li, Si ;
Zou, Feng ;
Bhaway, Sarang M. ;
Qiang, Zhe ;
Gao, Min ;
Vogt, Bryan D. ;
Zhu, Yu .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (32) :12471-12478
[6]   Nanospace-Confinement Copolymerization Strategy for Encapsulating Polymeric Sulfur into Porous Carbon for Lithium Sulfur Batteries [J].
Ding, Bing ;
Chang, Zhi ;
Xu, Guiyin ;
Nie, Ping ;
Wang, Jie ;
Pan, Jin ;
Dou, Hui ;
Zhang, Xiaogang .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (21) :11165-11171
[7]   Sustainable Sulfur-rich Copolymer/Graphene Composite as Lithium-Sulfur Battery Cathode with Excellent Electrochemical Performance [J].
Ghosh, Arnab ;
Shukla, Swapnil ;
Khosla, Gaganpreet Singh ;
Lochab, Bimlesh ;
Mitra, Sagar .
SCIENTIFIC REPORTS, 2016, 6
[8]   Single step transformation of sulphur to Li2S2/Li2S in Li-S batteries [J].
Helen, M. ;
Reddy, M. Anji ;
Diemant, Thomas ;
Golla-Schindler, Ute ;
Behm, R. Juergen ;
Kaiser, Ute ;
Fichtner, Maximilian .
SCIENTIFIC REPORTS, 2015, 5
[9]   Probing the sulfur polymerization transition in situ with Raman spectroscopy [J].
Kalampounias, AG ;
Andrikopoulos, KS ;
Yannopoulos, SN .
JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (18) :8460-8467
[10]   Sodium Polysulfides during Charge/Discharge of the Room-Temperature Na/S Battery Using TEGDME Electrolyte [J].
Kim, Icpyo ;
Park, Jin-Young ;
Kim, ChangHyeon ;
Park, Jin-Woo ;
Ahn, Jae-Pyoung ;
Ahn, Jou-Hyeon ;
Kim, Ki-Won ;
Ahn, Hyo-Jun .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (05) :A611-A616