Systolic Aspects of Black Hole Entropy

被引:0
作者
Kalogeropoulos, Nikolaos [1 ]
机构
[1] Amer Univ Iraq, Dept Math & Nat Sci, Kirkuk Main Rd, Sulaimani 46001, Kurdistan Regio, Iraq
关键词
Riemannian geometry; systolic inequalities; black holes; entropy; topological censorship; SURFACES; TOPOLOGY; HORIZONS;
D O I
10.3390/axioms9010030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We attempt to provide a mesoscopic treatment of the origin of black hole entropy in (3 + 1)-dimensional spacetimes. We ascribe this entropy to the non-trivial topology of the space-like sections sigma of the horizon. This is not forbidden by topological censorship, since all the known energy inequalities needed to prove the spherical topology of sigma are violated in quantum theory. We choose the systoles of sigma to encode its complexity, which gives rise to the black hole entropy. We present hand-waving reasons why the entropy of the black hole can be considered as a function of the volume entropy of sigma. We focus on the limiting case of sigma having a large genus.
引用
收藏
页数:13
相关论文
共 59 条
[1]   The Dark Energy Survey: Data Release 1 [J].
Abbott, T. M. C. ;
Abdalla, F. B. ;
Allam, S. ;
Amara, A. ;
Annis, J. ;
Asorey, J. ;
Avila, S. ;
Ballester, O. ;
Banerji, M. ;
Barkhouse, W. ;
Baruah, L. ;
Baumer, M. ;
Bechtol, K. ;
Becker, M. R. ;
Benoit-Levy, A. ;
Bernstein, G. M. ;
Bertin, E. ;
Blazek, J. ;
Bocquet, S. ;
Brooks, D. ;
Brout, D. ;
Buckley-Geer, E. ;
Burke, D. L. ;
Busti, V. ;
Campisano, R. ;
Cardiel-Sas, L. ;
Rosell, A. Carnero ;
Kind, M. Carrasco ;
Carretero, J. ;
Castander, F. J. ;
Cawthon, R. ;
Chang, C. ;
Chen, X. ;
Conselice, C. ;
Costa, G. ;
Crocce, M. ;
Cunha, C. E. ;
D'Andrea, C. B. ;
da Costa, L. N. ;
Das, R. ;
Daues, G. ;
Davis, T. M. ;
Davis, C. ;
De Vicente, J. ;
Depoy, D. L. ;
DeRose, J. ;
Desai, S. ;
Diehl, H. T. ;
Dietrich, J. P. ;
Dodelson, S. .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2018, 239 (02)
[3]  
Andersson L., 2003, ADV THEOR MATH PHYS, V68, P307, DOI DOI 10.4310/ATMP.2002.V6.N2.A4
[4]   ON THE GEOMETRY AND TOPOLOGY OF INITIAL DATA SETS WITH HORIZONS [J].
Andersson, Lars ;
Dahl, Mattias ;
Galloway, Gregory J. ;
Pollack, Daniel .
ASIAN JOURNAL OF MATHEMATICS, 2018, 22 (05) :863-882
[5]  
[Anonymous], 2012, ARXIV12085399
[6]  
[Anonymous], 2015, LECT NOTES PHYS
[7]  
[Anonymous], 1996, 1 AUSTRALASIAN C GEN
[8]   Isolated and dynamical horizons and their applications [J].
Ashtekar A. ;
Krishnan B. .
Living Reviews in Relativity, 2004, 7 (1)
[9]   Can an astrophysical black hole have a topologically non-trivial event horizon? [J].
Bambi, Cosimo ;
Modesto, Leonardo .
PHYSICS LETTERS B, 2011, 706 (01) :13-18
[10]   ISOSYSTOLIC INEQUALITY FOR THE KLEIN BOTTLE [J].
BAVARD, C .
MATHEMATISCHE ANNALEN, 1986, 274 (03) :439-441