Protein affinity map of chemical space

被引:22
作者
Kauvar, LM [1 ]
Villar, HO [1 ]
Sportsman, JR [1 ]
Higgins, DL [1 ]
Schmidt, DE [1 ]
机构
[1] Terrapin Technol Inc, S San Francisco, CA 94080 USA
来源
JOURNAL OF CHROMATOGRAPHY B | 1998年 / 715卷 / 01期
关键词
affinity fingerprinting; chemical space; proteins;
D O I
10.1016/S0378-4347(98)00045-0
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Affinity fingerprinting is a quantitative method for mapping chemical space based on binding preferences of compounds for a reference panel of proteins. An effective reference panel of <20 proteins can be empirically selected which shows differential interaction with nearly all compounds. By using this map to iteratively sample the chemical space, identification of active ligands from a library of 30 000 candidate compounds has been accomplished for a wide spectrum of specific protein targets. In each case, <200 compounds were directly assayed against the target. Further, analysis of the fingerprint database suggests a strategy for effective selection of affinity chromatography ligands and scaffolds for combinatorial chemistry. With such a system, the large numbers of potential therapeutic targets emerging from genome research can be categorized according to ligand binding properties, complementing sequence based classification. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:93 / 102
页数:10
相关论文
共 50 条
[21]   The Privileged Chemical Space Predictor (PCSP): A computer program that identifies privileged chemical space from screens of modularly assembled chemical libraries [J].
Seedhouse, Steven J. ;
Labuda, Lucas P. ;
Disney, Matthew D. .
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2010, 20 (04) :1338-1343
[22]   An exploration of the 3D chemical space has highlighted a specific shape profile for the compounds intended to inhibit protein-protein interactions [J].
Mélaine A Kuenemann ;
Laura ML Bourbon ;
Céline M Labbé ;
Bruno O Villoutreix ;
Olivier Sperandio .
BMC Bioinformatics, 16
[23]   Exploring Chemical Space with Machine Learning [J].
Arus-Pous, Josep ;
Awale, Mahendra ;
Probst, Daniel ;
Reymond, Jean-Louis .
CHIMIA, 2019, 73 (12) :1018-1023
[24]   Chemical Space Visualization Using ViFrame [J].
Skoda, Petr ;
Hoksza, David .
2013 IEEE/ACIS 12TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE (ICIS), 2013, :541-546
[25]   Progress in visual representations of chemical space [J].
Osolodkin, Dmitry I. ;
Radchenko, Eugene V. ;
Orlov, Alexey A. ;
Voronkov, Andrey E. ;
Palyulin, Vladimir A. ;
Zefirov, Nikolay S. .
EXPERT OPINION ON DRUG DISCOVERY, 2015, 10 (09) :959-973
[26]   Exploring the chemical space of aromatase inhibitors [J].
Nantasenamat, Chanin ;
Li, Hao ;
Mandi, Prasit ;
Worachartcheewan, Apilak ;
Monnor, Teerawat ;
Isarankura-Na-Ayudhya, Chartchalerm ;
Prachayasittikul, Virapong .
MOLECULAR DIVERSITY, 2013, 17 (04) :661-677
[27]   Deterministic clustering of the available chemical space [J].
Philipp Thiel ;
Lisa Peltason ;
Christian Ottmann ;
Oliver Kohlbacher .
Journal of Cheminformatics, 5 (Suppl 1)
[28]   Exploring the chemical space of aromatase inhibitors [J].
Chanin Nantasenamat ;
Hao Li ;
Prasit Mandi ;
Apilak Worachartcheewan ;
Teerawat Monnor ;
Chartchalerm Isarankura-Na-Ayudhya ;
Virapong Prachayasittikul .
Molecular Diversity, 2013, 17 :661-677
[29]   Estimating Recovery in the Evaporation Chemical Space [J].
Kaleb J. Duelge ;
Joshua A. Young .
Biomedical Materials & Devices, 2024, 2 (2) :1205-1214
[30]   Chemical space of orally active compounds [J].
Matero, Sanni ;
Lahtela-Kakkonen, Maija ;
Korhonen, Ossi ;
Ketolainen, Jarkko ;
Lappalainen, Reijo ;
Poso, Antti .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2006, 84 (1-2) :134-141