DL-Learner-A framework for inductive learning on the Semantic Web

被引:68
作者
Buehmann, Lorenz [1 ]
Lehmann, Jens [2 ]
Westphal, Patrick [1 ]
机构
[1] Univ Leipzig, Inst Comp Sci, AKSW Grp, Augustuspl 10, D-04009 Leipzig, Germany
[2] Univ Bonn, Inst Comp Sci, Romerstr 164, D-53117 Bonn, Germany
来源
JOURNAL OF WEB SEMANTICS | 2016年 / 39卷
关键词
System description; Machine learning; Supervised learning; Semantic Web; OWL; RDF; PREDICTIVE TOXICOLOGY CHALLENGE;
D O I
10.1016/j.websem.2016.06.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this system paper, wedescribe the DL-Learner framework, which supports supervised machine learning using OWL and RDF for background knowledge representation. It can be beneficial in various data and schema analysis tasks with applications in different standard machine learning scenarios, e.g. in the life sciences, as well as Semantic Web specific applications such as ontology learning and enrichment. Since its creation in 2007, it has become the main OWL and RDF-based software framework for supervised structured machine learning and includes several algorithm implementations, usage examples and has applications building on top of the framework. The article gives an overview of the framework with a focus on algorithms and use cases. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:15 / 24
页数:10
相关论文
共 43 条
  • [31] Learning in Description Logics with Fuzzy Concrete Domains
    Lisi, Francesca A.
    Straccia, Umberto
    [J]. FUNDAMENTA INFORMATICAE, 2015, 140 (3-4) : 373 - 391
  • [32] GENERALIZATION AS SEARCH
    MITCHELL, TM
    [J]. ARTIFICIAL INTELLIGENCE, 1982, 18 (02) : 203 - 226
  • [33] Biography and future challenges
    Muggleton, Stephen
    De Raedt, Luc
    Poole, David
    Bratko, Ivan
    Flach, Peter
    Inoue, Katsumi
    Srinivasan, Ashwin
    [J]. MACHINE LEARNING, 2012, 86 (01) : 3 - 23
  • [34] Nienhuys-Cheng S.-H., 1997, LNCS, V1228
  • [35] Quinlan J. R., 1986, Machine Learning, V1, P81, DOI 10.1023/A:1022643204877
  • [36] LEARNING LOGICAL DEFINITIONS FROM RELATIONS
    QUINLAN, JR
    [J]. MACHINE LEARNING, 1990, 5 (03) : 239 - 266
  • [37] Salguero A, 2016, STUD COMPUT INTELL, V639, P93, DOI 10.1007/978-3-319-30319-2_5
  • [38] Automated identification of protein-ligand interaction features using Inductive Logic Programming: a hexose binding case study
    Santos, Jose C. A.
    Nassif, Houssam
    Page, David
    Muggleton, Stephen H.
    Sternberg, Michael J. E.
    [J]. BMC BIOINFORMATICS, 2012, 13
  • [39] Srinivasan A, 1999, IJCAI-99: PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 & 2, P270
  • [40] Statistical evaluation of the Predictive Toxicology Challenge 2000-2001
    Toivonen, H
    Srinivasan, A
    King, RD
    Kramer, S
    Helma, C
    [J]. BIOINFORMATICS, 2003, 19 (10) : 1183 - 1193