DL-Learner-A framework for inductive learning on the Semantic Web

被引:68
作者
Buehmann, Lorenz [1 ]
Lehmann, Jens [2 ]
Westphal, Patrick [1 ]
机构
[1] Univ Leipzig, Inst Comp Sci, AKSW Grp, Augustuspl 10, D-04009 Leipzig, Germany
[2] Univ Bonn, Inst Comp Sci, Romerstr 164, D-53117 Bonn, Germany
来源
JOURNAL OF WEB SEMANTICS | 2016年 / 39卷
关键词
System description; Machine learning; Supervised learning; Semantic Web; OWL; RDF; PREDICTIVE TOXICOLOGY CHALLENGE;
D O I
10.1016/j.websem.2016.06.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this system paper, wedescribe the DL-Learner framework, which supports supervised machine learning using OWL and RDF for background knowledge representation. It can be beneficial in various data and schema analysis tasks with applications in different standard machine learning scenarios, e.g. in the life sciences, as well as Semantic Web specific applications such as ontology learning and enrichment. Since its creation in 2007, it has become the main OWL and RDF-based software framework for supervised structured machine learning and includes several algorithm implementations, usage examples and has applications building on top of the framework. The article gives an overview of the framework with a focus on algorithms and use cases. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:15 / 24
页数:10
相关论文
共 43 条
  • [21] Protein fold discovery using stochastic logic programs
    Chen, Jianzhong
    Kelley, Lawrence
    Muggleton, Stephen
    Sternberg, Michael
    [J]. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2008, 4911 LNAI : 244 - 262
  • [22] A POLYNOMIAL APPROACH TO THE CONSTRUCTIVE INDUCTION OF STRUCTURAL KNOWLEDGE
    KIETZ, JU
    MORIK, K
    [J]. MACHINE LEARNING, 1994, 14 (02) : 193 - 217
  • [23] Test-driven Evaluation of Linked Data Quality
    Kontokostas, Dimitris
    Westphal, Patrick
    Auer, Soeren
    Hellmann, Sebastian
    Lehmann, Jens
    Cornelissen, Roland
    [J]. WWW'14: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, 2014, : 747 - 757
  • [24] Lehmann J, 2007, LECT NOTES ARTIF INT, V4571, P883
  • [25] Lehmann J, 2011, LECT NOTES COMPUT SC, V6643, P63, DOI 10.1007/978-3-642-21034-1_5
  • [26] Lehmann J, 2010, LECT NOTES COMPUT SC, V6497, P177, DOI 10.1007/978-3-642-17749-1_12
  • [27] Class expression learning for ontology engineering
    Lehmann, Jens
    Auer, Soeren
    Buehmann, Lorenz
    Tramp, Sebastian
    [J]. JOURNAL OF WEB SEMANTICS, 2011, 9 (01): : 71 - 81
  • [28] Concept learning in description logics using refinement operators
    Lehmann, Jens
    Hitzler, Pascal
    [J]. MACHINE LEARNING, 2010, 78 (1-2) : 203 - 250
  • [29] Lehmann J, 2009, J MACH LEARN RES, V10, P2639
  • [30] Lehmann Jens, 2009, LNCS, P73, DOI DOI 10.1007/978-3-642-13840-9_8