Hardy's theorem and the short-time Fourier transform of Schwartz functions

被引:68
作者
Gröchenig, K [1 ]
Zimmermann, G
机构
[1] Univ Connecticut, Dept Math U9, Storrs, CT 06269 USA
[2] Univ Hohenheim, Inst Angew Math & Stat, D-70593 Stuttgart, Germany
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2001年 / 63卷
关键词
D O I
10.1112/S0024610700001800
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Schwartz space of rapidly decaying test functions is characterized by the decay of the short-time Fourier transform or cross-Wigner distribution. Then a version of Hardy's theorem is proved for the short-time Fourier transform and for the Wigner distribution.
引用
收藏
页码:205 / 214
页数:10
相关论文
共 21 条
[2]  
Bjork G., 1965, ARK MAT, V6, P351
[3]   MATRIX COEFFICIENTS OF NILPOTENT LIE-GROUPS [J].
CORWIN, L .
LECTURE NOTES IN MATHEMATICS, 1984, 1077 :1-11
[4]   BANDWIDTH VERSUS TIME CONCENTRATION - THE HEISENBERG-PAULI-WEYL INEQUALITY [J].
COWLING, MG ;
PRICE, JF .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1984, 15 (01) :151-165
[5]   UNCERTAINTY PRINCIPLES AND SIGNAL RECOVERY [J].
DONOHO, DL ;
STARK, PB .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1989, 49 (03) :906-931
[6]  
DYM H, 1985, PROBABILITY MATH STA, V14
[7]  
Feichtinger HG, 1998, APPL NUM HARM ANAL, P123
[8]   The uncertainty principle: A mathematical survey [J].
Folland, GB ;
Sitaram, A .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1997, 3 (03) :207-238
[9]  
FOLLAND GB, 1989, ANN MATH STUD, V121
[10]  
Grochenig K, 1996, STUD MATH, V121, P87