Heterostructured Catalysts for Electrocatalytic and Photocatalytic Carbon Dioxide Reduction

被引:349
作者
Prabhu, P. [1 ]
Jose, Vishal [1 ]
Lee, Jong-Min [1 ]
机构
[1] Nanyang Technol Univ, Sch Chem & Biomed Engn, 62 Nanyang Dr, Singapore 637459, Singapore
关键词
carbon dioxide reduction; heterostructures; reaction pathways; ENHANCING CO2 ELECTROREDUCTION; CORE-SHELL NANOCOMPOSITES; IN-SITU SYNTHESIS; ELECTROCHEMICAL REDUCTION; HIGH-PERFORMANCE; GOLD NANOPARTICLES; EFFICIENT ELECTROREDUCTION; MESOPOROUS CARBON; DOPED GRAPHENE; AQUEOUS CO2;
D O I
10.1002/adfm.201910768
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Heterostructured catalysts are hybrid materials that contain interfaces between their constituents formed through combinations of multiple solid-state materials. The presence of multiple constituents institutes a synergistic effect that endows the catalyst with superior performance and appreciable potential in a diverse range of catalytic applications, including electrocatalytic and photocatalytic reduction of carbon dioxide. These promising catalysts can support a feasible method for large-scale processing of valuable carbonaceous feedstock or fuel generation and alleviation of atmospheric carbon dioxide levels. Such technologies will serve as the much-needed remedy for the global energy and environmental crisis. A broad spectrum of recently developed heterostructured catalysts pertaining to electrocatalytic and photocatalytic carbon dioxide reduction is evaluated. The insights included are of relevance to refresh fundamentals pertaining to the electron transfer processes leading to carbon dioxide reduction and the mechanistic reduction pathways yielding a possible multitude of carbonaceous products. Detailed discussions provide a rational understanding of how the hybrid and resultant properties from various combinations are useful in enhancing catalytic function. Lastly, the performance profiles of various catalyst structures together with modification strategies employed are of interest to highlight the current challenges to and directions for future catalyst development.
引用
收藏
页数:32
相关论文
共 155 条
[1]   Poly-Amide Modified Copper Foam Electrodes for Enhanced Electrochemical Reduction of Carbon Dioxide [J].
Ahn, Sunyhik ;
Klyukin, Konstantin ;
Wakeham, Russell J. ;
Rudd, Jennifer A. ;
Lewis, Aled R. ;
Alexander, Shirin ;
Carla, Francesco ;
Alexandrov, Vitaly ;
Andreoli, Enrico .
ACS CATALYSIS, 2018, 8 (05) :4132-4142
[2]   Towards the electrochemical conversion of carbon dioxide into methanol [J].
Albo, J. ;
Alvarez-Guerra, M. ;
Castano, P. ;
Irabien, A. .
GREEN CHEMISTRY, 2015, 17 (04) :2304-2324
[3]   Production of methanol from CO2 electroreduction at Cu2O and Cu2O/ZnO-based electrodes in aqueous solution [J].
Albo, Jonathan ;
Saez, Alfonso ;
Solla-Gullon, Jose ;
Montiel, Vicente ;
Irabien, Angel .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2015, 176 :709-717
[4]   CO2 Activation over Catalytic Surfaces [J].
Alvarez, Andrea ;
Borges, Marta ;
Jose Corral-Perez, Juan ;
Giner Olcina, Joan ;
Hu, Lingjun ;
Cornu, Damien ;
Huang, Rui ;
Stoian, Dragos ;
Urakawa, Atsushi .
CHEMPHYSCHEM, 2017, 18 (22) :3135-3141
[5]   Carbon-based hydrogels: synthesis and their recent energy applications [J].
Anjali, Jayakumar ;
Jose, Vishal K. ;
Lee, Jong-Min .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (26) :15491-15518
[6]   Well-designed ZnV2O6/g-C3N4 2D/2D nanosheets heterojunction with faster charges separation via pCN as mediator towards enhanced photocatalytic reduction of CO2 to fuels [J].
Bafaqeer, Abdullah ;
Tahir, Muhammad ;
Amin, Nor Aishah Saidina .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 242 :312-326
[7]  
Bard A. J., 1985, STANDARD POTENTIALS
[8]   Solar-to-fuels conversion over In2O3/g-C3N4 hybrid photocatalysts [J].
Cao, Shao-Wen ;
Liu, Xin-Feng ;
Yuan, Yu-Peng ;
Zhang, Zhen-Yi ;
Liao, Yu-Sen ;
Fang, Jun ;
Loo, Say Chye Joachim ;
Sum, Tze Chien ;
Xue, Can .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 147 :940-946
[9]   Highly effective sites and selectivity of nitrogen-doped graphene/CNT catalysts for CO2 electrochemical reduction [J].
Chai, Guo-Liang ;
Guo, Zheng-Xiao .
CHEMICAL SCIENCE, 2016, 7 (02) :1268-1275
[10]   Encapsulation of Iron Nitride by Fe-N-C Shell Enabling Highly Efficient Electroreduction of CO2 to CO [J].
Cheng, Qingqing ;
Mao, Kun ;
Ma, Lushan ;
Yang, Lijun ;
Zou, Liangliang ;
Zou, Zhiqing ;
Hu, Zheng ;
Yang, Hui .
ACS ENERGY LETTERS, 2018, 3 (05) :1205-1211