Magnetic Resonance Cancer Nanotheranostics

被引:2
|
作者
Orel, V. E. [1 ,2 ]
Tselepi, M. [3 ,8 ]
Mitrelias, T. [3 ]
Shevchenko, A. D. [4 ]
Rykhalskiy, O. Y. [1 ,2 ]
Golovko, T. S. [5 ]
Ganich, O. V. [5 ]
Romanov, A. V. [1 ]
Orel, V. B. [6 ]
Burlaka, A. P. [7 ]
Lukin, S. N. [7 ]
Barnes, C. H. W. [3 ]
机构
[1] Natl Canc Inst, Med Phys & Bioengn Res Lab, Kiev, Ukraine
[2] Igor Sikorsky Kyiv Polytech Inst, Dept Biomed Engn, Kiev, Ukraine
[3] Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge, England
[4] GV Kurdyumov Inst Met Phys, Kiev, Ukraine
[5] Natl Canc Inst, Res Dept Radiodiagnost, Kiev, Ukraine
[6] Bogomolets Natl Med Univ, Kiev, Ukraine
[7] NAS Ukraine, RE Kavetsky Inst Expt Pathol Oncol & Radiobiol, Kiev, Ukraine
[8] Univ Ioannina, Dept Phys, Ioannina, Greece
关键词
Magnetic resonance; Magnetic nanocomplex; Doxorubicin; Tumor;
D O I
10.1007/978-981-10-9023-3_120
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
It is well known that the magnetic spin effects during nanotherapy can cause tumor cell apoptosis and necrosis based on redox reactions. The current study was carried out on C57Bl/6 mice with Lewis lung carcinoma. The magnetic nanocomplex administration combined with the impact of magnetic resonance system (1.5 T) showed maximal antitumor and antimetastatic effects. The electron spin resonance spectra have been used as diagnostic markers and recorded a change in the tumor redox state based on chemical species such as NO-FeS-proteins and ubisemiquinone. The technology of magnetic resonance nanotheranostics could potentially allow to improve the antitumor effect of chemotherapeutic agents in disseminated cancer therapy.
引用
收藏
页码:651 / 654
页数:4
相关论文
共 50 条
  • [11] An efficient tumor-inducible nanotheranostics for magnetic resonance imaging and enhanced photodynamic therapy
    Wei Zhu
    Zhang, Li
    Yang, Zhe
    Liu, Pei
    Wang, Jing
    Cao, Jinguo
    Shen, Aiguo
    Xu, Zushun
    CHEMICAL ENGINEERING JOURNAL, 2019, 358 : 969 - 979
  • [12] MXenes in Cancer Nanotheranostics
    Iravani, Siavash
    Varma, Rajender S.
    NANOMATERIALS, 2022, 12 (19)
  • [13] Supramolecular cancer nanotheranostics
    Zhou, Jiong
    Rao, Lang
    Yu, Guocan
    Cook, Timothy R.
    Chen, Xiaoyuan
    Huang, Feihe
    CHEMICAL SOCIETY REVIEWS, 2021, 50 (04) : 2839 - 2891
  • [14] Fe3O4/Graphene-Based Nanotheranostics for Bimodal Magnetic Resonance/Fluorescence Imaging and Cancer Therapy
    Divband, Baharak
    Gharehaghaji, Nahideh
    Hassani, Samad
    JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2022, 32 (12) : 4443 - 4460
  • [15] Fe3O4/Graphene-Based Nanotheranostics for Bimodal Magnetic Resonance/Fluorescence Imaging and Cancer Therapy
    Baharak Divband
    Nahideh Gharehaghaji
    Samad Hassani
    Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32 : 4443 - 4460
  • [16] Challenges to effective cancer nanotheranostics
    Melancon, Marites P.
    Stafford, R. Jason
    Li, Chun
    JOURNAL OF CONTROLLED RELEASE, 2012, 164 (02) : 177 - 182
  • [17] Bioinspired approaches for cancer nanotheranostics
    Evangelopoulos, Michael
    Tasciotti, Ennio
    NANOMEDICINE, 2017, 12 (01) : 5 - 7
  • [18] In vitro Biological Tests as the First Tools To Validate Magnetic Nanotheranostics for Colorectal Cancer Models
    Julia Martin, Maria
    Gentili, Claudia
    Lassalle, Veronica
    CHEMMEDCHEM, 2020, 15 (12) : 1003 - 1017
  • [19] Gadolinium-porphyrin based polymer nanotheranostics for fluorescence/magnetic resonance imaging guided photodynamic therapy
    Chen, Wandi
    Zhao, Junkai
    Hou, Mengfei
    Yang, Mo
    Yi, Changqing
    NANOSCALE, 2021, 13 (38) : 16197 - 16206
  • [20] Physically stimulated nanotheranostics for next generation cancer therapy: Focus on magnetic and light stimulations
    Thorat, Nanasaheb D.
    Tofail, Syed A. M.
    von Rechenberg, Brigitte
    Townley, Helen
    Brennan, Grace
    Silien, Christophe
    Yadav, Hemraj M.
    Steffen, Thomas
    Bauer, Joanna
    APPLIED PHYSICS REVIEWS, 2019, 6 (04)