MDS Constacyclic Codes and MDS Symbol-Pair Constacyclic Codes

被引:11
|
作者
Dinh, Hai Q. [1 ,2 ]
Nguyen, Bac T. [3 ,4 ]
Singh, Abhay Kumar [5 ]
Yamaka, Woraphon [6 ]
机构
[1] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City 700000, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City 700000, Vietnam
[3] Duy Tan Univ, Inst Fundamental & Appl Sci, Ho Chi Minh City 700000, Vietnam
[4] Duy Tan Univ, Fac Nat Sci, Da Nang 550000, Vietnam
[5] Indian Inst Technol ISM, Dept Appl Math, Dhanbad 826004, Bihar, India
[6] Chiang Mai Univ, Fac Econ, Ctr Excellence Econometr, Chiang Mai 50200, Thailand
来源
IEEE ACCESS | 2021年 / 9卷
关键词
Constacyclic codes; cyclic codes; hamming distance; MDScodes; singleton bound; symbolpair distance; DISTANCE SEPARABLE CODES; CYCLIC CODES; EXPLICIT REPRESENTATION; LENGTH 4P(S); ENUMERATION;
D O I
10.1109/ACCESS.2021.3117569
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Symbol-pair codes are used to protect against symbol-pair errors in high density data storage systems. One of the most important tasks in symbol-pair coding theory is to design MDS codes. MDS symbol-pair codes are optimal in the sense that such codes attain the Singleton bound. In this paper, a new class of MDS symbol-pair codes with code-length 5p and optimal pair distance of 7 is established. It is shown that for any prime p 1 (mod 5), we can always construct four p-ary MDS symbol-pair cyclic codes of length 5p of largest possible pair distance 7. We also completely determined all MDS symbol-pair and MDS b-symbol codes of length p(s) and 2p(s) over F-p(m) + uF(p)(m) by filling in some missing cases, and rectifying some gaps in Type 3 codes of recent papers. As an applications of our results, we use MAGMA to provide many examples of new MDS codes over Fpm and F-p(m) + uF(p)(m).
引用
收藏
页码:137970 / 137990
页数:21
相关论文
共 50 条
  • [1] MDS Constacyclic Codes and MDS Symbol-Pair Constacyclic Codes
    Dinh, Hai Q.
    Nguyen, Bac T.
    Singh, Abhay Kumar
    Yamaka, Woraphon
    Nguyen, Bac T. (nguyentrongbac@duytan.edu.vn), 1600, Institute of Electrical and Electronics Engineers Inc. (09): : 137970 - 137990
  • [2] On symbol-pair distances of repeated-root constacyclic codes of length 2ps over Fpm + uFpm and MDS symbol-pair codes
    Dinh, Hai Q.
    Singh, Abhay Kumar
    Thakur, Madhu Kant
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2023, 34 (06) : 1027 - 1043
  • [3] ON SYMBOL-PAIR DISTANCE DISTRIBUTIONS OF REPEATED-ROOT CONSTACYCLIC CODES OF LENGTH 4ps AND MDS CODES
    Dinh, Hai q.
    Singh, Abhay kumar
    Thakur, Madhu kant
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2025,
  • [4] MDS Constacyclic Codes of Prime Power Lengths Over Finite Fields and Construction of Quantum MDS Codes
    Dinh, Hai Q.
    ElDin, Ramy Taki
    Nguyen, Bac T.
    Tansuchat, Roengchai
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (10) : 3043 - 3078
  • [5] On the Symbol-Pair Distance of Repeated-Root Constacyclic Codes of Prime Power Lengths
    Dinh, Hai Q.
    Bac Trong Nguyen
    Singh, Abhay Kumar
    Sriboonchitta, Songsak
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (04) : 2417 - 2430
  • [6] Constructions of maximum distance separable symbol-pair codes using cyclic and constacyclic codes
    Shuxing Li
    Gennian Ge
    Designs, Codes and Cryptography, 2017, 84 : 359 - 372
  • [7] Constructions of maximum distance separable symbol-pair codes using cyclic and constacyclic codes
    Li, Shuxing
    Ge, Gennian
    DESIGNS CODES AND CRYPTOGRAPHY, 2017, 84 (03) : 359 - 372
  • [8] On symbol-pair weight distribution of MDS codes and simplex codes over finite fields
    Ma, Junru
    Luo, Jinquan
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2021, 13 (01): : 101 - 115
  • [9] A Construction of New MDS Symbol-Pair Codes
    Kai, Xiaoshan
    Zhu, Shixin
    Li, Ping
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (11) : 5828 - 5834
  • [10] On the symbol-pair distance of some classes of repeated-root constacyclic codes over Galois ring
    Dinh, Hai Q.
    Kumar, Narendra
    Singh, Abhay Kumar
    Singh, Manoj Kumar
    Gupta, Indivar
    Maneejuk, Paravee
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2023, 34 (01) : 111 - 128