Entropy and the Spectral Action

被引:9
作者
Chamseddine, Ali H. [1 ,3 ,5 ]
Connes, Alain [2 ,3 ,4 ,5 ]
van Suijlekom, Walter D. [5 ]
机构
[1] Amer Univ Beirut, Phys Dept, Beirut, Lebanon
[2] Coll France, 3 Rue Ulm, F-75005 Paris, France
[3] IHES, F-91440 Bures Sur Yvette, France
[4] Ohio State Univ, Dept Math, 231 W 18th Ave, Columbus, OH 43210 USA
[5] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00220-019-03297-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We compute the information theoretic von Neumann entropy of the state associated to the fermionic second quantization of a spectral triple. We show that this entropy is given by the spectral action of the spectral triple for a specific universal function. The main result of our paper is the surprising relation between this function and the Riemann zeta function. It manifests itself in particular by the values of the coefficients c(d) by which it multiplies the d dimensional terms in the heat expansion of the spectral triple. We find that c(d) is the product of the Riemann xi function evaluated at -d by an elementary expression. In particular c(4) is a rational multiple of zeta(5) and c(2) a rational multiple of zeta(3). The functional equation gives a duality between the coefficients in positive dimension, which govern the high energy expansion, and the coefficients in negative dimension, exchanging even dimension with odd dimension.
引用
收藏
页码:457 / 471
页数:15
相关论文
共 9 条
[1]  
Araki Ara87 H., 1987, CONT MATH, V62, P23, DOI DOI 10.1090/CONM/062/878376
[2]  
Bratteli Ola, 1997, Operator Algebras and Quantum Statistical Mechanics, V2nd
[3]   ON FERMION GAUGE GROUPS, CURRENT-ALGEBRAS AND KAC-MOODY ALGEBRAS [J].
CAREY, AL ;
RUIJSENAARS, SNM .
ACTA APPLICANDAE MATHEMATICAE, 1987, 10 (01) :1-86
[4]   The spectral action principle [J].
Chamseddine, AH ;
Connes, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 186 (03) :731-750
[5]   Inner fluctuations in noncommutative geometry without the first order condition [J].
Chamseddine, Ali H. ;
Connes, Alain ;
van Suijlekom, Walter D. .
JOURNAL OF GEOMETRY AND PHYSICS, 2013, 73 :222-234
[7]  
Gracia-Bondia J.M., 2001, ELEMENTS NONCOMMUTAT
[8]  
Gradshteyn I. S., 1994, Table of Integrals, Series, and Products
[9]  
SHALE D, 1965, J MATH MECH, V14, P315