Direct Numerical Simulation Database for Supersonic and Hypersonic Turbulent Boundary Layers

被引:149
|
作者
Zhang, Chao [1 ]
Duan, Lian [1 ]
Choudhari, Meelan M. [2 ]
机构
[1] Missouri Univ Sci & Technol, Dept Mech & Aerosp Engn, Rolla, MO 65409 USA
[2] NASA, Langley Res Ctr, Computat Aerosciences Branch, Mail Stop 128, Hampton, VA 23681 USA
关键词
PRESSURE-FLUCTUATIONS; HEAT-TRANSFER; REYNOLDS; MODELS;
D O I
10.2514/1.J057296
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper presents a direct numerical simulation database of high-speed zero-pressure-gradient turbulent boundary layers developing spatially over a flat plate with nominal freestream Mach number ranging from 2.5 to 14 and wall-to-recovery temperature ranging from 0.18 to 1.0. The flow conditions of the DNS are representative of the operational conditions of the Purdue Mach 6 quiet tunnel, the Sandia Hypersonic Wind Tunnel at Mach 8, and the AEDC Hypervelocity Tunnel No. 9 at Mach 14. The DNS database is used to gauge the performance of compressibility transformations, including the classical Morkovin's scaling and strong Reynolds analogy as well as the newly proposed mean velocity and temperature scalings that explicitly account for wall heat flux. Several insights into the effect of direct compressibility are gained by inspecting the thermodynamic fluctuations and the Reynolds stress budget terms. Precomputed flow statistics, including Reynolds stresses and their budgets, will be available at the website of the NASA Langley Turbulence Modeling Resource, allowing other investigators to query any property of interest.
引用
收藏
页码:4297 / 4311
页数:15
相关论文
共 50 条
  • [21] Large Eddy Simulation of Hypersonic Turbulent Boundary Layers
    Kianvashrad, Nadia
    Knight, Doyle
    FLUIDS, 2021, 6 (12)
  • [22] Direct numerical simulation of a supersonic turbulent boundary layer subjected to a concave surface
    Wu, Xiaoshuai
    Liang, Jianhan
    Zhao, Yuxin
    PHYSICAL REVIEW FLUIDS, 2019, 4 (04)
  • [23] Direct Numerical Simulation of Supersonic Turbulent Boundary Layer with Spanwise Wall Oscillation
    Ni, Weidan
    Lu, Lipeng
    Le Ribault, Catherine
    Fang, Jian
    ENERGIES, 2016, 9 (03)
  • [24] Direct numerical simulation of the supersonic turbulent boundary layer of supercritical carbon dioxide
    Wang, Jinhong
    Yang, Bijie
    Martinez-Botas, Ricardo
    Cao, Teng
    PHYSICS OF FLUIDS, 2025, 37 (02)
  • [25] Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp
    Wu, M.
    Martin, M. P.
    AIAA JOURNAL, 2007, 45 (04) : 879 - 889
  • [26] Direct numerical simulation of stable and unstable turbulent thermal boundary layers
    Hattori, Hirofumi
    Houra, Tomoya
    Nagano, Yasutaka
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2007, 28 (06) : 1262 - 1271
  • [27] Inflow conditions for spatial direct numerical simulation of turbulent boundary layers
    Huang ZhangFeng
    Zhou Heng
    SCIENCE IN CHINA SERIES G-PHYSICS MECHANICS & ASTRONOMY, 2008, 51 (08): : 1106 - 1115
  • [28] Inflow conditions for spatial direct numerical simulation of turbulent boundary layers
    ZhangFeng Huang
    Heng Zhou
    Science in China Series G: Physics, Mechanics and Astronomy, 2008, 51 : 1106 - 1115
  • [29] Inflow conditions for spatial direct numerical simulation of turbulent boundary layers
    HUANG ZhangFeng & ZHOU Heng Department of Mechanics
    Liu-Hui Center of Applied Mathematics
    Science China(Physics,Mechanics & Astronomy), 2008, (08) : 1106 - 1115
  • [30] Direct numerical simulation of adverse pressure gradient turbulent boundary layers
    Skote, M
    Henningson, DS
    ADVANCES IN TURBULENCE VII, 1998, 46 : 171 - 174