Direct Numerical Simulation Database for Supersonic and Hypersonic Turbulent Boundary Layers

被引:150
作者
Zhang, Chao [1 ]
Duan, Lian [1 ]
Choudhari, Meelan M. [2 ]
机构
[1] Missouri Univ Sci & Technol, Dept Mech & Aerosp Engn, Rolla, MO 65409 USA
[2] NASA, Langley Res Ctr, Computat Aerosciences Branch, Mail Stop 128, Hampton, VA 23681 USA
关键词
PRESSURE-FLUCTUATIONS; HEAT-TRANSFER; REYNOLDS; MODELS;
D O I
10.2514/1.J057296
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper presents a direct numerical simulation database of high-speed zero-pressure-gradient turbulent boundary layers developing spatially over a flat plate with nominal freestream Mach number ranging from 2.5 to 14 and wall-to-recovery temperature ranging from 0.18 to 1.0. The flow conditions of the DNS are representative of the operational conditions of the Purdue Mach 6 quiet tunnel, the Sandia Hypersonic Wind Tunnel at Mach 8, and the AEDC Hypervelocity Tunnel No. 9 at Mach 14. The DNS database is used to gauge the performance of compressibility transformations, including the classical Morkovin's scaling and strong Reynolds analogy as well as the newly proposed mean velocity and temperature scalings that explicitly account for wall heat flux. Several insights into the effect of direct compressibility are gained by inspecting the thermodynamic fluctuations and the Reynolds stress budget terms. Precomputed flow statistics, including Reynolds stresses and their budgets, will be available at the website of the NASA Langley Turbulence Modeling Resource, allowing other investigators to query any property of interest.
引用
收藏
页码:4297 / 4311
页数:15
相关论文
共 56 条
  • [1] Wall pressure fluctuations beneath supersonic turbulent boundary layers
    Bernardini, Matteo
    Pirozzoli, Sergio
    [J]. PHYSICS OF FLUIDS, 2011, 23 (08)
  • [2] A numerical study of turbulent supersonic isothermal-wall channel flow
    Coleman, GN
    Kim, J
    Moser, RD
    [J]. JOURNAL OF FLUID MECHANICS, 1995, 305 : 159 - 183
  • [3] Reynolds-number scaling of the flat-plate turbulent boundary layer
    DeGraaff, DB
    Eaton, JK
    [J]. JOURNAL OF FLUID MECHANICS, 2000, 422 : 319 - 346
  • [4] Direct numerical simulation of hypersonic turbulent boundary layers. Part 4. Effect of high enthalpy
    Duan, L.
    Martin, M. P.
    [J]. JOURNAL OF FLUID MECHANICS, 2011, 684 : 25 - 59
  • [5] Direct numerical simulation of hypersonic turbulent boundary layers. Part 3. Effect of Mach number
    Duan, L.
    Beekman, I.
    Martin, M. P.
    [J]. JOURNAL OF FLUID MECHANICS, 2011, 672 : 245 - 267
  • [6] Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature
    Duan, L.
    Beekman, I.
    Martin, M. P.
    [J]. JOURNAL OF FLUID MECHANICS, 2010, 655 : 419 - 445
  • [7] Duan L., 2014, 20 AIAACEAS AEROACOU, DOI DOI 10.2514/6.2014-2912
  • [8] Duan L., 2018, 2018 AIAA AEROSPACE, DOI DOI 10.2514/6.2018-0347
  • [9] Pressure fluctuations induced by a hypersonic turbulent boundary layer
    Duan, Lian
    Choudhari, Meelan M.
    Zhang, Chao
    [J]. JOURNAL OF FLUID MECHANICS, 2016, 804 : 578 - 607
  • [10] Numerical study of acoustic radiation due to a supersonic turbulent boundary layer
    Duan, Lian
    Choudhari, Meelan M.
    Wu, Minwei
    [J]. JOURNAL OF FLUID MECHANICS, 2014, 746 : 165 - 192