Cross-subject EEG emotion classification based on few-label adversarial domain adaption

被引:31
|
作者
Wang, Yingdong [1 ,2 ]
Liu, Jiatong [1 ]
Ruan, Qunsheng [1 ]
Wang, Shuocheng [1 ]
Wang, Chen [1 ]
机构
[1] Xiamen Univ, Sch Informat, 422 Siming South Rd, Xiamen, Fujian, Peoples R China
[2] Guangzhou Panu Polytech, Sch Informat Engn, 1342 Shiliang Rd, Guangzhou, Guangdong, Peoples R China
关键词
Electroencephalogram (EEG); Emotion classification; Cross-subject; Few label adversarial domain adaption;
D O I
10.1016/j.eswa.2021.115581
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Emotion classification signal based on the electroencephalogram (EEG) is an important part of big data associated with health. One of the main challenges in this regard is the varying patterns of EEG indifferent subjects. Domain adaptation is an effective method to reduce the data difference between the source domain and the target domain. However, it is an enormous challenge to make a discriminator-based domain adaptation with a small target data and transform the target domain to the source domain. In the present study, a novel method called "few-label adversarial domain adaption"(FLADA) is proposed for cross-subject emotion classification tasks with small EEG data. The proposed method involves three steps: (a) Selecting subjects of the close source domain forming an adapted list. Few labeled target data are tested based on each emotion model of the source subject to get the subject list of the source domain. (b)Training three models based on each selected subject and the target subject. Three loss functions and six groups' dataset are designed to get a domain adaption model for each selected source subject. (c) Distilling all classifiers for classifying the target emotion. In general, the main purpose of the proposed method, which originates from the Meta-learning, is to find a feature representation that is broadly suitable for the target subject and source subject with limited labels. The proposed method can be applied to all deep learning oriented models. In order to evaluate the performance of the proposed method, extensive experiments are carried out on SEED and DEAP datasets, which are public datasets. It is found that with a small amount of target data, the proposed FLADA model outperforms the state-of-art methods in terms of accuracy and AUC-ROC. All codes generated in this article are available at github: https://github.com/heibaipei/FLADA.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Generator-based Domain Adaptation Method with Knowledge Free for Cross-subject EEG Emotion Recognition
    Dongmin Huang
    Sijin Zhou
    Dazhi Jiang
    Cognitive Computation, 2022, 14 : 1316 - 1327
  • [22] Generator-based Domain Adaptation Method with Knowledge Free for Cross-subject EEG Emotion Recognition
    Huang, Dongmin
    Zhou, Sijin
    Jiang, Dazhi
    COGNITIVE COMPUTATION, 2022, 14 (04) : 1316 - 1327
  • [23] Cross-subject emotion EEG signal recognition based on source microstate analysis
    Zhang, Lei
    Xiao, Di
    Guo, Xiaojing
    Li, Fan
    Liang, Wen
    Zhou, Bangyan
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [24] Evolutionary Ensemble Learning for EEG-Based Cross-Subject Emotion Recognition
    Zhang, Hanzhong
    Zuo, Tienyu
    Chen, Zhiyang
    Wang, Xin
    Sun, Poly Z. H.
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (07) : 3872 - 3881
  • [25] Cross-subject emotion recognition with contrastive learning based on EEG signal correlations
    Hu, Mengting
    Xu, Dan
    He, Kangjian
    Zhao, Kunyuan
    Zhang, Hao
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 104
  • [26] Multisource Transfer Learning for Cross-Subject EEG Emotion Recognition
    Li, Jinpeng
    Qiu, Shuang
    Shen, Yuan-Yuan
    Liu, Cheng-Lin
    He, Huiguang
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (07) : 3281 - 3293
  • [27] GNN-based multi-source domain prototype representation for cross-subject EEG emotion recognition
    Guo, Yi
    Tang, Chao
    Wu, Hao
    Chen, Badong
    NEUROCOMPUTING, 2024, 609
  • [28] EEG-based cross-subject emotion recognition using multi-source domain transfer learning
    Quan, Jie
    Li, Ying
    Wang, Lingyue
    He, Renjie
    Yang, Shuo
    Guo, Lei
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 84
  • [29] Coarse-to-Fine Domain Adaptation for Cross-Subject EEG Emotion Recognition with Contrastive Learning
    Ran, Shuang
    Zhong, Wei
    Hue, Fei
    Ye, Long
    Zhang, Qin
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT XV, 2025, 15045 : 406 - 419
  • [30] Multi-Class Transfer Learning and Domain Selection for Cross-Subject EEG Classification
    Maswanganyi, Rito Clifford
    Tu, Chungling
    Owolawi, Pius Adewale
    Du, Shengzhi
    APPLIED SCIENCES-BASEL, 2023, 13 (08):