Cross-subject EEG emotion classification based on few-label adversarial domain adaption

被引:31
|
作者
Wang, Yingdong [1 ,2 ]
Liu, Jiatong [1 ]
Ruan, Qunsheng [1 ]
Wang, Shuocheng [1 ]
Wang, Chen [1 ]
机构
[1] Xiamen Univ, Sch Informat, 422 Siming South Rd, Xiamen, Fujian, Peoples R China
[2] Guangzhou Panu Polytech, Sch Informat Engn, 1342 Shiliang Rd, Guangzhou, Guangdong, Peoples R China
关键词
Electroencephalogram (EEG); Emotion classification; Cross-subject; Few label adversarial domain adaption;
D O I
10.1016/j.eswa.2021.115581
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Emotion classification signal based on the electroencephalogram (EEG) is an important part of big data associated with health. One of the main challenges in this regard is the varying patterns of EEG indifferent subjects. Domain adaptation is an effective method to reduce the data difference between the source domain and the target domain. However, it is an enormous challenge to make a discriminator-based domain adaptation with a small target data and transform the target domain to the source domain. In the present study, a novel method called "few-label adversarial domain adaption"(FLADA) is proposed for cross-subject emotion classification tasks with small EEG data. The proposed method involves three steps: (a) Selecting subjects of the close source domain forming an adapted list. Few labeled target data are tested based on each emotion model of the source subject to get the subject list of the source domain. (b)Training three models based on each selected subject and the target subject. Three loss functions and six groups' dataset are designed to get a domain adaption model for each selected source subject. (c) Distilling all classifiers for classifying the target emotion. In general, the main purpose of the proposed method, which originates from the Meta-learning, is to find a feature representation that is broadly suitable for the target subject and source subject with limited labels. The proposed method can be applied to all deep learning oriented models. In order to evaluate the performance of the proposed method, extensive experiments are carried out on SEED and DEAP datasets, which are public datasets. It is found that with a small amount of target data, the proposed FLADA model outperforms the state-of-art methods in terms of accuracy and AUC-ROC. All codes generated in this article are available at github: https://github.com/heibaipei/FLADA.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Domain Adversarial Neural Network with Reliable Pseudo-labels Iteration for cross-subject EEG emotion recognition
    Ju, Xiangyu
    Su, Jianpo
    Dai, Sheng
    Wu, Xu
    Li, Ming
    Hu, Dewen
    KNOWLEDGE-BASED SYSTEMS, 2025, 316
  • [12] Cross-subject EEG Channel Optimization by Domain Adversarial Sparse Learning Model
    Wu, Zhenhua
    Zeng, Hong
    Zhao, Yue
    Li, Xiufeng
    Zhang, Jiaming
    Hattori, Motonobu
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 1176 - 1179
  • [13] Cross-subject EEG linear domain adaption based on batch normalization and depthwise convolutional neural network
    Li, Guofa
    Ouyang, Delin
    Yang, Liu
    Li, Qingkun
    Tian, Kai
    Wu, Baiheng
    Guo, Gang
    KNOWLEDGE-BASED SYSTEMS, 2023, 280
  • [14] Cross-Subject EEG-Based Emotion Recognition Using Deep Metric Learning and Adversarial Training
    Alameer, Hawraa Razzaq Abed
    Salehpour, Pedram
    Hadi Aghdasi, Seyyed
    Feizi-Derakhshi, Mohammad-Reza
    IEEE ACCESS, 2024, 12 : 130241 - 130252
  • [15] Plug-and-Play Domain Adaptation for Cross-Subject EEG-based Emotion Recognition
    Zhao, Li-Ming
    Yan, Xu
    Lu, Bao-Liang
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 863 - 870
  • [16] Joint spatial feature adaption and confident pseudo-label selection for cross-subject motor imagery EEG signals classification
    Yang, Siqi
    Huang, Zhihua
    Luo, Tian-jian
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 278
  • [17] Exploring EEG Features in Cross-Subject Emotion Recognition
    Li, Xiang
    Song, Dawei
    Zhang, Peng
    Zhang, Yazhou
    Hou, Yuexian
    Hu, Bin
    FRONTIERS IN NEUROSCIENCE, 2018, 12
  • [18] Multisource Associate Domain Adaptation for Cross-Subject and Cross-Session EEG Emotion Recognition
    She, Qingshan
    Zhang, Chenqi
    Fang, Feng
    Ma, Yuliang
    Zhang, Yingchun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [19] Domain Adaptation for Cross-Subject Emotion Recognition by Subject Clustering
    Liu, Jin
    Shen, Xinke
    Song, Sen
    Zhang, Dan
    2021 10TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2021, : 904 - 908
  • [20] Learning a robust unified domain adaptation framework for cross-subject EEG-based emotion recognition
    Jimenez-Guarneros, Magdiel
    Fuentes-Pineda, Gibran
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 86