Mixture Poisson regression models for heterogeneous count data based on latent and fuzzy class analysis

被引:5
作者
Yang, MS [1 ]
Lai, CY [1 ]
机构
[1] Chung Yuan Christian Univ, Dept Appl Math, Chungli 32023, Taiwan
关键词
count data; latent class model; fuzzy class model; poisson regression analysis; heterogeneous data;
D O I
10.1007/s00500-004-0369-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we propose a new approach, called a fuzzy class model for Poisson regression, in the analysis of heterogeneous count data. On the basis of fuzzy set concept and fuzzy classification maximum likelihood (FCML) procedures we create an FCML algorithm for fuzzy class Poisson regression models. Traditionally, the EM algorithm had been used for latent class regression models. Thus, the accuracy and effectiveness of EM and FCML algorithms for estimating the parameters are compared. The results show that the proposed FCML algorithm presents better accuracy and effectiveness and can be used as another good tool to regression analysis for heterogeneous count data.
引用
收藏
页码:519 / 524
页数:6
相关论文
共 50 条
[31]   NONLINEAR-REGRESSION MODELS FOR CORRELATED COUNT DATA [J].
BURNETT, RT ;
SHEDDEN, J ;
KREWSKI, D .
ENVIRONMETRICS, 1992, 3 (02) :211-222
[32]   Applications of some discrete regression models for count data [J].
Kibria, B. M. Golam .
PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2006, 2 (01) :1-16
[33]   Using poisson class regression to analyze count data in correctional and forensic psychology - A relatively old solution to a relatively new problem [J].
Walters, Glenn D. .
CRIMINAL JUSTICE AND BEHAVIOR, 2007, 34 (12) :1659-1674
[34]   Semi-parametric extended Poisson process models for count data [J].
Podlich, HM ;
Faddy, MJ ;
Smyth, GK .
STATISTICS AND COMPUTING, 2004, 14 (04) :311-321
[35]   Semi-parametric extended Poisson process models for count data [J].
Heather M. Podlich ;
Malcolm J. Faddy ;
Gordon K. Smyth .
Statistics and Computing, 2004, 14 :311-321
[36]   Flexible Distribution-Based Regression Models for Count Data: Application to Medical Diagnosis [J].
Koochemeshkian, Pantea ;
Zamzami, Nuha ;
Bouguila, Nizar .
CYBERNETICS AND SYSTEMS, 2020, 51 (04) :442-466
[37]   A TRANSITION MODEL FOR ANALYSIS OF ZERO-INFLATED LONGITUDINAL COUNT DATA USING GENERALIZED POISSON REGRESSION MODEL [J].
Baghfalaki, Taban ;
Ganjali, Mojtaba .
REVSTAT-STATISTICAL JOURNAL, 2020, 18 (01) :27-45
[38]   The Applications of Generalized Poisson Regression Models to Insurance Claim Data [J].
Faroughi, Pouya ;
Li, Shu ;
Ren, Jiandong .
RISKS, 2023, 11 (12)
[39]   Zero-inflated Bell regression models for count data [J].
Lemonte, Artur J. ;
Moreno-Arenas, German ;
Castellares, Fredy .
JOURNAL OF APPLIED STATISTICS, 2020, 47 (02) :265-286
[40]   Conditional Akaike Information Criteria for a Class of Poisson Mixture Models with Random Effects [J].
Yu, Dalei .
SCANDINAVIAN JOURNAL OF STATISTICS, 2016, 43 (04) :1214-1235