Mixture Poisson regression models for heterogeneous count data based on latent and fuzzy class analysis

被引:5
|
作者
Yang, MS [1 ]
Lai, CY [1 ]
机构
[1] Chung Yuan Christian Univ, Dept Appl Math, Chungli 32023, Taiwan
关键词
count data; latent class model; fuzzy class model; poisson regression analysis; heterogeneous data;
D O I
10.1007/s00500-004-0369-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we propose a new approach, called a fuzzy class model for Poisson regression, in the analysis of heterogeneous count data. On the basis of fuzzy set concept and fuzzy classification maximum likelihood (FCML) procedures we create an FCML algorithm for fuzzy class Poisson regression models. Traditionally, the EM algorithm had been used for latent class regression models. Thus, the accuracy and effectiveness of EM and FCML algorithms for estimating the parameters are compared. The results show that the proposed FCML algorithm presents better accuracy and effectiveness and can be used as another good tool to regression analysis for heterogeneous count data.
引用
收藏
页码:519 / 524
页数:6
相关论文
共 50 条
  • [1] Mixture Poisson regression models for heterogeneous count data based on latent and fuzzy class analysis
    Miin-Shen Yang
    Chien-Yo Lai
    Soft Computing, 2005, 9 : 519 - 524
  • [2] Comparison of Poisson mixture models for count data clusterization
    Susinskas, J
    Radavicius, M
    INFORMATICA, 2002, 13 (02) : 209 - 226
  • [3] Extended Poisson-Tweedie: Properties and regression models for count data
    Bonat, Wagner H.
    Jorgensen, Bent
    Kokonendji, Celestin C.
    Hinde, John
    Demetrio, Clarice G. B.
    STATISTICAL MODELLING, 2018, 18 (01) : 24 - 49
  • [4] Bayesian negative binomial mixture regression models for the analysis of sequence count and methylation data
    Li, Qiwei
    Cassese, Alberto
    Guindani, Michele
    Vannucci, Marina
    BIOMETRICS, 2019, 75 (01) : 183 - 192
  • [5] Latent class model with two latent variables for analysis of count data
    Yamaguchi, Kazunori
    Sakurai, Naoko
    Watanabe, Michiko
    COMPSTAT 2006: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2006, : 395 - +
  • [6] Statistical process control of overdispersed count data based on one-parameter Poisson mixture models
    Jesus, Bruno D.
    Ferreira, Paulo H.
    Boaventura, Laion L.
    Fiaccone, Rosemeire L.
    Bertoli, Wesley
    Ramos, Pedro L.
    Louzada, Francisco
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2022, 38 (05) : 2324 - 2344
  • [7] A mixture of generalized latent variable models for mixed mode and heterogeneous data
    Cai, Jing-Heng
    Song, Xin-Yuan
    Lam, Kwok-Hap
    Ip, Edward Hak-Sing
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (11) : 2889 - 2907
  • [8] MIXTURE-MODELS FOR THE ANALYSIS OF REPEATED COUNT DATA
    VANDUIJN, MAJ
    BOCKENHOLT, U
    APPLIED STATISTICS-JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C, 1995, 44 (04): : 473 - 485
  • [9] Focus on research methods - Analysis of count data using Poisson regression
    Hutchinson, MK
    Holtman, MC
    RESEARCH IN NURSING & HEALTH, 2005, 28 (05) : 408 - 418
  • [10] Financial data modeling by Poisson mixture regression
    Faria, S.
    Goncalves, F.
    JOURNAL OF APPLIED STATISTICS, 2013, 40 (10) : 2150 - 2162