Pole placement for SISO linear systems using Gerschgorin theorem

被引:0
作者
Hote, Yogesh V. [1 ]
Gupta, J. R. P. [1 ]
机构
[1] Netaji Subhas Inst Technol, Lecturer Instrumentat & Control Dept, New Delhi 110075, India
来源
WMSCI 2006: 10TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL IV, PROCEEDINGS | 2006年
关键词
pole placement; Gerschgorin theorem; bounds; stability;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A method is proposed to stabilize linear time invariant SISO systems by shifting unstable poles on open left half of the s-plane, thus providing a sufficient condition for stability without specifying closed loop poles. It is based on Gerschgorin Theorem. The proposed method does not require computation of eigenvalues. A numerical example is presented to show the application of proposed method.
引用
收藏
页码:254 / 256
页数:3
相关论文
共 50 条
[21]   Pole Placement for Time-Delayed Systems Using Galerkin Approximations [J].
Kandala, Shanti S. ;
Uchida, Thomas K. ;
Vyasarayani, C. P. .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2019, 141 (05)
[22]   Stochastic Linear Quadratic Control with Regional Pole Placement [J].
Wang, Jie ;
Hou, Ting ;
Ma, Hongji .
PROCEEDINGS OF THE 2016 12TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2016, :3361-3366
[23]   Fault Detection and Isolation for a Class of Nonlinear Systems Based on Gerschgorin Theorem and Optimization Approach [J].
Sun, Jie ;
Liu, He ;
Li, Xiao-Jian .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (09) :5591-5601
[24]   A New Design Method for Pole Placement of Linear Time-Varying Discrete Multivariable Systems [J].
Mutoh, Yasuhiko ;
Hara, Tomohiro .
2011 30TH CHINESE CONTROL CONFERENCE (CCC), 2011, :6115-6120
[25]   Robust state-derivative pole placement LMI-based designs for linear systems [J].
Faria, F. A. ;
Assuncao, E. ;
Teixeira, M. C. M. ;
Cardim, R. ;
da Silva, N. A. P. .
INTERNATIONAL JOURNAL OF CONTROL, 2009, 82 (01) :1-12
[26]   Pole placement for linear time-varying non-lexicographically fixed MIMO systems [J].
Valásek, M ;
Olgaç, N .
AUTOMATICA, 1999, 35 (01) :101-108
[27]   Control of linear systems subject to time-domain constraints with polynomial pole placement and LMIs [J].
Henrion, D ;
Tarbouriech, S ;
Era, VK .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (09) :1360-1364
[28]   Adaptive pole-placement of controllable systems [J].
Chen, HF ;
Zhang, JF .
SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES, 1996, 39 (01) :103-112
[29]   Adaptive pole-placement of controllable systems [J].
陈翰馥 ;
张纪峰 .
Science in China(Series E:Technological Sciences), 1996, (01) :103-112
[30]   Design pole placement controller using linearized neural networks for MISO systems [J].
Chen, JH ;
Yea, YZ .
JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2003, 36 (08) :1005-1011