A computer-assisted proof of the existence of solutions to a boundary value problem with an integral boundary condition

被引:2
作者
Fogelklou, Oswald [1 ]
Tucker, Warwick [1 ]
Kreiss, Gunilla [2 ]
Siklosi, Malin [2 ]
机构
[1] Uppsala Univ, Dept Math, SE-75106 Uppsala, Sweden
[2] Uppsala Univ, Dept Informat Technol, SE-75105 Uppsala, Sweden
关键词
Computer-assisted proof; Numerical verification; Viscous Burgers' equation; Enclosure; Existence; Two-point boundary value problems; Fixed-point problems; NUMERICAL VERIFICATION METHOD;
D O I
10.1016/j.cnsns.2010.07.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a computer-assisted method that establishes the existence and local uniqueness of a stationary solution to the viscous Burgers' equation. The problem formulation involves a left boundary condition and one integral boundary condition, which is a variation of a previous approach. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1227 / 1243
页数:17
相关论文
共 22 条
[11]  
Kreiss H.-O., 1989, PURE APPL MATH, V136
[12]   Self-similar solutions of the Burgers hierarchy [J].
Kudryashov, Nikolai A. .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (05) :1990-1993
[13]   Exact solutions of equations for the Burgers hierarchy [J].
Kudryashov, Nikolai A. ;
Sinelshchikov, Dmitry I. .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (03) :1293-1300
[14]   A NUMERICAL VERIFICATION METHOD FOR THE EXISTENCE OF WEAK SOLUTIONS FOR NONLINEAR BOUNDARY-VALUE-PROBLEMS [J].
NAKAO, MT .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 164 (02) :489-507
[15]   Computer-assisted enclosure methods for elliptic differential equations [J].
Plum, M .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 324 (1-3) :147-187
[16]  
Press W. H., 2002, NUMERICAL RECIPES C
[17]  
SIKLOSI M, 2004, KTH NUMER ANAL COMPU
[18]  
Tucker W, 2002, FOUND COMPUT MATH, V2, P53, DOI 10.1007/s102080010018
[19]   Numerical verification method for solutions of boundary value problems with local uniqueness by Banach's fixed-point theorem [J].
Yamamoto, N .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (05) :2004-2013
[20]  
Zgliczynski P, 2001, FOUND COMPUT MATH, V1, P255, DOI 10.1007/s102080010010