A computer-assisted proof of the existence of solutions to a boundary value problem with an integral boundary condition

被引:2
作者
Fogelklou, Oswald [1 ]
Tucker, Warwick [1 ]
Kreiss, Gunilla [2 ]
Siklosi, Malin [2 ]
机构
[1] Uppsala Univ, Dept Math, SE-75106 Uppsala, Sweden
[2] Uppsala Univ, Dept Informat Technol, SE-75105 Uppsala, Sweden
关键词
Computer-assisted proof; Numerical verification; Viscous Burgers' equation; Enclosure; Existence; Two-point boundary value problems; Fixed-point problems; NUMERICAL VERIFICATION METHOD;
D O I
10.1016/j.cnsns.2010.07.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a computer-assisted method that establishes the existence and local uniqueness of a stationary solution to the viscous Burgers' equation. The problem formulation involves a left boundary condition and one integral boundary condition, which is a variation of a previous approach. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1227 / 1243
页数:17
相关论文
共 22 条
[1]  
ASEN PO, 2004, TRITANA0427 KTH
[2]  
Berz M., 1998, Reliable Computing, V4, P361, DOI 10.1023/A:1024467732637
[3]  
Brenner S., 2008, Texts in Applied Mathematics, V15
[4]  
BRESSAN A, 2000, Hyperbolic Systems of Conservation Laws
[5]  
Burgers J.M., 1974, The Nonlinear Diffusion Equation, DOI [10.1007/978-94-010-1745-9, DOI 10.1007/978-94-010-1745-9]
[6]   ON A QUASI-LINEAR PARABOLIC EQUATION OCCURRING IN AERODYNAMICS [J].
COLE, JD .
QUARTERLY OF APPLIED MATHEMATICS, 1951, 9 (03) :225-236
[7]  
FARZANEH R, 1995, THESIS CORNELL
[9]  
Holden H., 2002, Front Tracking for Hyperbolic Conservation Laws
[10]   THE PARTIAL DIFFERENTIAL EQUATION UT+UUX=MU-XX [J].
HOPF, E .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1950, 3 (03) :201-230