Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery

被引:468
作者
Li, Bin [1 ]
Nie, Zimin [1 ]
Vijayakumar, M. [1 ]
Li, Guosheng [1 ]
Liu, Jun [1 ]
Sprenkle, Vincent [1 ]
Wang, Wei [1 ]
机构
[1] Pacific NW Natl Lab, Energy & Environm Directorate, Washington, DC 99352 USA
来源
NATURE COMMUNICATIONS | 2015年 / 6卷
关键词
PROGRESS; BROMINE;
D O I
10.1038/ncomms7303
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Redox flow batteries are receiving wide attention for electrochemical energy storage due to their unique architecture and advantages, but progress has so far been limited by their low energy density (similar to 25Wh l(-1)). Here we report a high-energy density aqueous zinc-polyiodide flow battery. Using the highly soluble iodide/triiodide redox couple, a discharge energy density of 167 Wh l(-1) is demonstrated with a near-neutral 5.0 M Znl(2) electrolyte. Nuclear magnetic resonance study and density functional theory-based simulation along with flow test data indicate that the addition of an alcohol (ethanol) induces ligand formation between oxygen on the hydroxyl group and the zinc ions, which expands the stable electrolyte temperature window to from -20 to 50 degrees C, while ameliorating the zinc dendrite. With the high-energy density and its benign nature free from strong acids and corrosive components, zinc-polyiodide flow battery is a promising candidate for various energy storage applications.
引用
收藏
页数:8
相关论文
共 29 条
[1]   Raman spectra of molecular crystals I. Chlorine, bromine, and iodine [J].
Anderson, A. ;
Sun, T. S. .
CHEMICAL PHYSICS LETTERS, 1970, 6 (06) :611-616
[2]   Suppressing Dendrite Growth during Zinc Electrodeposition by PEG-200 Additive [J].
Banik, Stephen J. ;
Akolkar, Rohan .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (11) :D519-D523
[3]   Characteristics of the Iodide/Triiodide Redox Mediator in Dye-Sensitized Solar Cells [J].
Boschloo, Gerrit ;
Hagfeldt, Anders .
ACCOUNTS OF CHEMICAL RESEARCH, 2009, 42 (11) :1819-1826
[4]   An All-Organic Non-aqueous Lithium-Ion Redox Flow Battery [J].
Brushett, Fikile R. ;
Vaughey, John T. ;
Jansen, Andrew N. .
ADVANCED ENERGY MATERIALS, 2012, 2 (11) :1390-1396
[5]   Application of Redox Non-Innocent Ligands to Non-Aqueous Flow Battery Electrolytes [J].
Cappillino, Patrick J. ;
Pratt, Harry D., III ;
Hudak, Nicholas S. ;
Tomson, Neil C. ;
Anderson, Travis M. ;
Anstey, Mitchell R. .
ADVANCED ENERGY MATERIALS, 2014, 4 (01)
[6]   Structural and Raman spectroscopic studies as complementary tools in elucidating the nature of the bonding in polyiodides and in donor-I2 adducts [J].
Deplano, P ;
Ferraro, JR ;
Mercuri, ML ;
Trogu, EF .
COORDINATION CHEMISTRY REVIEWS, 1999, 188 :71-95
[7]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[8]   THE REACTION BETWEEN ETHYL ALCOHOL AND BROMINE [J].
FARKAS, L ;
PERLMUTTER, B ;
SCHACHTER, O .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1949, 71 (08) :2829-2833
[9]   A metal-free organic-inorganic aqueous flow battery [J].
Huskinson, Brian ;
Marshak, Michael P. ;
Suh, Changwon ;
Er, Sueleyman ;
Gerhardt, Michael R. ;
Galvin, Cooper J. ;
Chen, Xudong ;
Aspuru-Guzik, Alan ;
Gordon, Roy G. ;
Aziz, Michael J. .
NATURE, 2014, 505 (7482) :195-+
[10]   Progress in redox flow batteries, remaining challenges and their applications in energy storage [J].
Leung, Puiki ;
Li, Xiaohong ;
de Leon, Carlos Ponce ;
Berlouis, Leonard ;
Low, C. T. John ;
Walsh, Frank C. .
RSC ADVANCES, 2012, 2 (27) :10125-10156