Quasi-diffusion magnetic resonance imaging (QDI): A fast, high b-value diffusion imaging technique

被引:13
作者
Barrick, Thomas R. [1 ]
Spilling, Catherine A. [1 ]
Ingo, Carson [2 ,3 ]
Madigan, Jeremy [4 ]
Isaacs, Jeremy D. [1 ,5 ]
Rich, Philip [4 ]
Jones, Timothy L. [6 ]
Magin, Richard L. [7 ]
Hall, Matt G. [8 ,9 ]
Howe, Franklyn A. [1 ]
机构
[1] St Georges Univ London, Neurosci Res Ctr, Mol & Clin Sci Res Inst, Cranmer Terrace, London SW17 0RE, England
[2] Northwestern Univ, Dept Neurol, Chicago, IL 60611 USA
[3] Northwestern Univ, Dept Phys Therapy & Human Movement Sci, Chicago, IL 60611 USA
[4] St Georges Univ Hosp NHS Fdn Trust, Dept Neuroradiol, London, England
[5] St Georges Univ Hosp NHS Fdn Trust, Dept Neurol, London, England
[6] St Georges Univ Hosp NHS Fdn Trust, Dept Neurosurg, London, England
[7] Univ Illinois, Dept Bioengn, Chicago, IL USA
[8] UCL, Great Ormond St Inst Child Hlth, London, England
[9] Natl Phys Lab, Teddington, Middx, England
基金
“创新英国”项目;
关键词
Magnetic resonance imaging; Brain; Continuous time random walk; Non-Gaussian diffusion; Diffusional kurtosis imaging; High b-value; FREE-WATER ELIMINATION; ANOMALOUS DIFFUSION; LAPLACIAN EIGENFUNCTIONS; MICROSTRUCTURAL CHANGES; AXON DIAMETER; RANDOM-WALKS; KURTOSIS; MRI; MODEL; BRAIN;
D O I
10.1016/j.neuroimage.2020.116606
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
To enable application of non-Gaussian diffusion magnetic resonance imaging (dMRI) techniques in large-scale clinical trials and facilitate translation to clinical practice there is a requirement for fast, high contrast, techniques that are sensitive to changes in tissue structure which provide diagnostic signatures at the early stages of disease. Here we describe a new way to compress the acquisition of multi-shell b-value diffusion data, Quasi-Diffusion MRI (QDI), which provides a probe of subvoxel tissue complexity using short acquisition times (1-4 min). We also describe a coherent framework for multi-directional diffusion gradient acquisition and data processing that allows computation of rotationally invariant quasi-diffusion tensor imaging (QDTI) maps. QDI is a quantitative technique that is based on a special case of the Continuous Time Random Walk model of diffusion dynamics and assumes the presence of non-Gaussian diffusion properties within tissue microstructure. QDI parameterises the diffusion signal attenuation according to the rate of decay (i.e. diffusion coefficient, D in mm(2) s(-1)) and the shape of the power law tail (i.e. the fractional exponent, alpha). QDI provides analogous tissue contrast to Diffusional Kurtosis Imaging (DKI) by calculation of normalised entropy of the parameterised diffusion signal decay curve, H-n, but does so without the limitations of a maximum b-value. We show that QDI generates images with superior tissue contrast to conventional diffusion imaging within clinically acceptable acquisition times of between 84 and 228 s. We show that QDI provides clinically meaningful images in cerebral small vessel disease and brain tumour case studies. Our initial findings suggest that QDI may be added to routine conventional dMRI acquisitions allowing simple application in clinical trials and translation to the clinical arena.
引用
收藏
页数:16
相关论文
共 87 条
  • [1] Free water elimination improves test-retest reproducibility of diffusion tensor imaging indices in the brain: A longitudinal multisite study of healthy elderly subjects
    Albi, Angela
    Pasternak, Ofer
    Minati, Ludovico
    Marizzoni, Moira
    Bartres-Faz, David
    Bargallo, Nuria
    Bosch, Beatriz
    Rossini, Paolo Maria
    Marra, Camillo
    Mueller, Bernhard
    Fiedler, Ute
    Wiltfang, Jens
    Roccatagliata, Luca
    Picco, Agnese
    Nobili, Flavio Mariano
    Blin, Oliver
    Sein, Julien
    Ranjeva, Jean-Philippe
    Didic, Mira
    Bombois, Stephanie
    Lopes, Renaud
    Bordet, Regis
    Gros-Dagnac, Helene
    Payoux, Pierre
    Zoccatelli, Giada
    Alessandrini, Franco
    Beltramello, Alberto
    Ferretti, Antonio
    Caulo, Massimo
    Aiello, Marco
    Cavaliere, Carlo
    Soricelli, Andrea
    Parnetti, Lucilla
    Tarducci, Roberto
    Floridi, Piero
    Tsolaki, Magda
    Constantinidis, Manos
    Drevelegas, Antonios
    Frisoni, Giovanni
    Jovicich, Jorge
    [J]. HUMAN BRAIN MAPPING, 2017, 38 (01) : 12 - 26
  • [2] A general framework for experiment design in diffusion MRI and its application in measuring direct tissue-microstructure features
    Alexander, Daniel C.
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2008, 60 (02) : 439 - 448
  • [3] Orientationally invariant indices of axon diameter and density from diffusion MRI
    Alexander, Daniel C.
    Hubbard, Penny L.
    Hall, Matt G.
    Moore, Elizabeth A.
    Ptito, Maurice
    Parker, Geoff J. M.
    Dyrby, Tim B.
    [J]. NEUROIMAGE, 2010, 52 (04) : 1374 - 1389
  • [4] Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images
    Andersson, Jesper L. R.
    Graham, Mark S.
    Zsoldos, Eniko
    Sotiropoulos, Stamatios N.
    [J]. NEUROIMAGE, 2016, 141 : 556 - 572
  • [5] [Anonymous], 2019, HDB FRACTIONAL CALCU
  • [6] [Anonymous], ANOMALOUS TRANSPORT
  • [7] [Anonymous], 1997, Fractals and Fractional Calculus in Continuum Mechanics
  • [8] [Anonymous], AGING DIS
  • [9] [Anonymous], 2019, THEOR PROBABILITY MA
  • [10] Unified segmentation
    Ashburner, J
    Friston, KJ
    [J]. NEUROIMAGE, 2005, 26 (03) : 839 - 851