Minimum Quantum Run-Time Characterization and Calibration via Restless Measurements with Dynamic Repetition Rates

被引:13
作者
Tornow, Caroline [1 ,2 ]
Kanazawa, Naoki [3 ]
Shanks, William E. [4 ]
Egger, Daniel J. [2 ]
机构
[1] Swiss Fed Inst Technol, CH-8093 Zurich, Switzerland
[2] IBM Quantum IBM Res Zurich, Saumerstr 4, CH-8803 Ruschlikon, Switzerland
[3] IBM Quantum IBM Res Tokyo, Tokyo 1038510, Japan
[4] IBM Quantum IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
关键词
Calibration - Quantum theory - Qubits;
D O I
10.1103/PhysRevApplied.17.064061
中图分类号
O59 [应用物理学];
学科分类号
摘要
The performance of a quantum processor depends on the characteristics of the device and the quality of the control pulses. Characterizing cloud-based quantum computers and calibrating the pulses that control them is necessary for high-fidelity operations. However, this time-intensive task eats into the availability of the device. Here, we show restless measurements with a dynamic repetition rate that speed-up calibration and characterization tasks. Randomized benchmarking is performed 5.3 times faster on the quantum device than when an active reset is used and without discarding any data. In addition, we calibrate a qubit with parameter scans and error-amplifying gate sequences and show speed-ups of up to a factor of 40 on the quantum device over active reset. Finally, we present a methodology to perform restless quantum process tomography that mitigates restless state preparation errors. These results reduce the footprint of characterization and calibration tasks. Quantum computers can thus either spend more time running applications or run calibrations more often to maintain gate fidelity.
引用
收藏
页数:16
相关论文
共 75 条
[1]   Universal gates for protected superconducting qubits using optimal control [J].
Abdelhafez, Mohamed ;
Baker, Brian ;
Gyenis, Andras ;
Mundada, Pranav ;
Houck, Andrew A. ;
Schuster, David ;
Koch, Jens .
PHYSICAL REVIEW A, 2020, 101 (02)
[2]   Qiskit pulse: programming quantum computers through the cloud with pulses [J].
Alexander, Thomas ;
Kanazawa, Naoki ;
Egger, Daniel J. ;
Capelluto, Lauren ;
Wood, Christopher J. ;
Javadi-Abhari, Ali ;
McKay, David C. .
QUANTUM SCIENCE AND TECHNOLOGY, 2020, 5 (04)
[3]  
Barron G. S., 2020, ARXIV201008520 QUANT
[4]   Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits [J].
Bialczak, R. C. ;
Ansmann, M. ;
Hofheinz, M. ;
Lucero, E. ;
Neeley, M. ;
O'Connell, A. D. ;
Sank, D. ;
Wang, H. ;
Wenner, J. ;
Steffen, M. ;
Cleland, A. N. ;
Martinis, J. M. .
NATURE PHYSICS, 2010, 6 (06) :409-413
[5]   Quantum machine learning [J].
Biamonte, Jacob ;
Wittek, Peter ;
Pancotti, Nicola ;
Rebentrost, Patrick ;
Wiebe, Nathan ;
Lloyd, Seth .
NATURE, 2017, 549 (7671) :195-202
[6]   Circuit quantum electrodynamics [J].
Blais, Alexandre ;
Grimsmo, Arne L. ;
Girvin, S. M. ;
Wallraffe, Andreas .
REVIEWS OF MODERN PHYSICS, 2021, 93 (02)
[7]  
Blume-Kohout R., 2013, ARXIV13104492 QUANT
[8]   Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography [J].
Blume-Kohout, Robin ;
Gamble, John King ;
Nielsen, Erik ;
Rudinger, Kenneth ;
Mizrahi, Jonathan ;
Fortier, Kevin ;
Maunz, Peter .
NATURE COMMUNICATIONS, 2017, 8
[9]   Quantum Algorithms for Mixed Binary Optimization Applied to Transaction Settlement [J].
Braine, Lee ;
Egger, Daniel J. ;
Glick, Jennifer ;
Woerner, Stefan .
IEEE TRANSACTIONS ON QUANTUM ENGINEERING, 2021, 2
[10]   Mitigating measurement errors in multiqubit experiments [J].
Bravyi, Sergey ;
Sheldon, Sarah ;
Kandala, Abhinav ;
Mckay, David C. ;
Gambetta, Jay M. .
PHYSICAL REVIEW A, 2021, 103 (04)