Optimal Structure From Motion: Local ambiguities and global estimates

被引:28
作者
Soatto, S [1 ]
Brockett, R [1 ]
机构
[1] Washington Univ, St Louis, MO 63130 USA
来源
1998 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS | 1998年
关键词
D O I
10.1109/CVPR.1998.698621
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present an analysis of SFM from the point of view of noise. This analysis results in an algorithm that is provably convergent and provably optimal with respect to a. chosen norm. In particular, we cast SFM as a nonlinear optimization problem and define a bilinear projection iteration that converges to fixed points of a certain cost-function. We then show that such fixed points are "fundamental", i.e. intrinsic to the problem of SFM and not an artifact introduced by our algorithm. We classify and characterize geometrically local extrema, and we argue that they correspond to phenomena observed in visual psychophysics. Finally, we show under what conditions it is possible - given convergence to a local extremum - to "jump" to the valley containing the optimum; this leads us to suggest a representation of the scene which is invariant with respect to such local extrema.
引用
收藏
页码:282 / 288
页数:7
相关论文
empty
未找到相关数据