Understanding Toughness in Bioinspired Cellulose Nanofibril/Polymer Nanocomposites

被引:46
作者
Benitez, Alejandro J. [1 ]
Lossada, Francisco [1 ]
Zhu, Baolei [1 ]
Rudolph, Tobias [1 ]
Walther, Andreas [1 ]
机构
[1] DWI Leibniz Inst Interact Mat, Forckenbeckstr 50, D-52056 Aachen, Germany
关键词
GLASS-TRANSITION TEMPERATURES; MECHANICAL-PROPERTIES; HIGH-PERFORMANCE; POLYMER NANOCOMPOSITES; NANOPAPER STRUCTURES; BIOLOGICAL-MATERIALS; CHITIN NANOFIBRILS; COMPOSITE FILMS; NACRE-MIMETICS; THIN-FILMS;
D O I
10.1021/acs.biomac.6b00533
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cellulose nanofibrils (CNFs) are considered next generation, renewable reinforcements for sustainable, high-performance bioinspired nanocomposites uniting high stiffness, strength and toughness. However, the challenges associated with making well-defined CNF/polymer nanopaper hybrid structures with well controlled polymer properties have so far hampered to deduce a quantitative picture of the mechanical properties space and deformation mechanisms, and limits the ability to tune and control the mechanical properties by rational design criteria. Here, we discuss detailed insights on how the thermo-mechanical properties of tailor-made copolymers govern the tensile properties in bioinspired CNF/polymer settings, hence at high fractions of reinforcements and under nanoconfinement conditions for the polymers. To this end, we synthesize a series of fully water-soluble and nonionic copolymers, whose glass transition temperatures (T-g) are varied from 60 to 130 degrees C. We demonstrate that well-defined polymer-coated core/shell nanofibrils form at intermediate stages and that well-defined nanopaper structures with tunable nanostructure arise. The systematic correlation between the thermal transitions in the (co)polymers, as well as its fraction, on the mechanical properties and deformation mechanisms of the nanocomposites is underscored by tensile tests, SEM imaging of fracture surfaces and dynamic mechanical analysis. An optimum toughness is obtained for copolymers with a Tg close to the testing temperature, where the soft phase possesses the best combination of high molecular mobility and cohesive strength. New deformation modes are activated for the toughest compositions. Our study establishes quantitative structure/property relationships in CNF/(co)polymer anopapers and opens the design space for future, rational molecular engineering using reversible supramolecular bonds or covalent cross-linking.
引用
收藏
页码:2417 / 2426
页数:10
相关论文
共 55 条
[41]   Fast Preparation Procedure for Large, Flat Cellulose and Cellulose/Inorganic Nanopaper Structures [J].
Sehaqui, Houssine ;
Liu, Andong ;
Zhou, Qi ;
Berglund, Lars A. .
BIOMACROMOLECULES, 2010, 11 (09) :2195-2198
[42]   Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness [J].
Svagan, Anna J. ;
Samir, My A. S. Azizi ;
Berglund, Lars A. .
BIOMACROMOLECULES, 2007, 8 (08) :2556-2563
[43]   Bioactive Gyroid Scaffolds Formed by Sacrificial Templating of Nanocellulose and Nanochitin Hydrogels as Instructive Platforms for Biomimetic Tissue Engineering [J].
Torres-Rendon, Jose Guillermo ;
Femmer, Tim ;
De Laporte, Laura ;
Tigges, Thomas ;
Rahimi, Khosrow ;
Gremse, Felix ;
Zafarnia, Sara ;
Lederle, Wiltrud ;
Ifuku, Shinsuke ;
Wessling, Matthias ;
Hardy, John G. ;
Walther, Andreas .
ADVANCED MATERIALS, 2015, 27 (19) :2989-2995
[44]   Mechanical Performance of Macrofibers of Cellulose and Chitin Nanofibrils Aligned by Wet-Stretching: A Critical Comparison [J].
Torres-Rendon, Jose Guillermo ;
Schacher, Felix H. ;
Ifuku, Shinsuke ;
Walther, Andreas .
BIOMACROMOLECULES, 2014, 15 (07) :2709-2717
[45]   Hydration and Dynamic State of Nanoconfined Polymer Layers Govern Toughness in Nacre-mimetic Nanocomposites [J].
Verho, Tuukka ;
Karesoja, Mikko ;
Das, Paramita ;
Martikainen, Lahja ;
Lund, Reidar ;
Alegria, Angel ;
Walther, Andreas ;
Ikkala, Olli .
ADVANCED MATERIALS, 2013, 25 (36) :5055-5059
[46]   Effect of Molecular Architecture of PDMAEMA-POEGMA Random and Block Copolymers on Their Adsorption on Regenerated and Anionic Nanocelluloses and Evidence of Interfacial Water Expulsion [J].
Vuoriluoto, Maija ;
Orelma, Hannes ;
Johansson, Leena-Sisko ;
Zhu, Baolei ;
Poutanen, Mikko ;
Walther, Andreas ;
Laine, Janne ;
Rojas, Orlando J. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2015, 119 (49) :15275-15286
[47]   Multifunctional High-Performance Biofibers Based on Wet-Extrusion of Renewable Native Cellulose Nanofibrils [J].
Walther, Andreas ;
Timonen, Jaakko V. I. ;
Diez, Isabel ;
Laukkanen, Antti ;
Ikkala, Olli .
ADVANCED MATERIALS, 2011, 23 (26) :2924-+
[48]   Bioinspired Mechanical Gradients in Cellulose Nanofibril/Polymer Nanopapers [J].
Wang, Baochun ;
Benitez, Alejandro J. ;
Lossada, Francisco ;
Merindol, Remi ;
Walther, Andreas .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (20) :5966-5970
[49]   Aligned Bioinspired Cellulose Nanocrystal-Based Nanocomposites with Synergetic Mechanical Properties and Improved Hygromechanical Performance [J].
Wang, Baochun ;
Torres-Rendon, Jose Guillermo ;
Yu, Jinchao ;
Zhang, Yumei ;
Walther, Andreas .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (08) :4595-4607
[50]   Biomimetic Gradient Polymers with Enhanced Damping Capacities [J].
Wang, Dong ;
Zhang, Huan ;
Guo, Jing ;
Cheng, Beichen ;
Cao, Yuan ;
Lu, Shengjun ;
Zhao, Ning ;
Xu, Jian .
MACROMOLECULAR RAPID COMMUNICATIONS, 2016, 37 (07) :655-661