Formation of zirconia tetragonal phase by plasma electrolytic oxidation of zirconium alloy in electrolyte comprising additives of yttria nanopowder

被引:27
作者
Apelfeld, A. V. [1 ]
Ashmarin, A. A. [2 ]
Borisov, A. M. [1 ]
Vinogradov, A. V. [1 ]
Savushkina, S. V. [2 ]
Shmytkova, E. A. [2 ]
机构
[1] Natl Res Univ, Moscow Aviat Inst, Orshanskaya St,3, Moscow 121552, Russia
[2] Keldysh Res Ctr, Moscow 125438, Russia
关键词
Zr-Nb alloy; Yttria nanopowder; Plasma electrolytic oxidation; Coating morphology and structure; Monoclinic and tetragonal zirconia; THERMAL-CONDUCTIVITY; STABILIZED ZIRCONIA; MICROARC OXIDATION; PURE ZIRCONIUM; RESISTANCE; MORPHOLOGY; COATINGS; OXIDE;
D O I
10.1016/j.surfcoat.2016.09.071
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The structure and composition of ceramic coatings formed by plasma electrolytic oxidation (PEO) of Zr-1% Nb alloy under AC conditions in silicate-hypophosphite electrolyte with additives of yttria nanopowder have been analyzed by scanning electron microscopy, X-ray microanalysis and XRD analysis. The yttria nanopowder in electrolyte leads to formation of additional thin superficial layer enriched in conglomerates of Y2O3 nanoparticles. The yttria leads to inhibition of low-temperature m-ZrO2 phase in PEO coating. After addition of 6 g/L yttria nanopowder in the electrolyte only t-ZrO2 phase was found in the coating surface layer. The excess part of Y2O3 nanoparticles is not involved in the PEO process of zirconia formation and remains in the PEO coatings in the form of inclusions. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:513 / 517
页数:5
相关论文
共 26 条
[1]   Thermal barrier coating made of porous zirconium oxide on a nickel-based single crystal superalloy formed by plasma electrolytic oxidation [J].
Akatsu, T. ;
Kato, T. ;
Shinoda, Y. ;
Wakai, F. .
SURFACE & COATINGS TECHNOLOGY, 2013, 223 :47-51
[2]   The study of plasma electrolytic oxidation coatings on Zr and Zr-1% Nb alloy at thermal cycling [J].
Apelfeld, A. V. ;
Borisov, A. M. ;
Krit, B. L. ;
Ludin, V. B. ;
Polyansky, M. N. ;
Romanovsky, E. A. ;
Savushkina, S. V. ;
Suminov, I. V. ;
Tkachenko, N. V. ;
Vinogradov, A. V. ;
Vostrikov, V. G. .
SURFACE & COATINGS TECHNOLOGY, 2015, 269 :279-285
[3]  
Betsofen S.Y., 2012, IZV VYSSH UCHEBN ZAV, V2, P45
[4]   Microarc oxidation in slurry electrolytes: A review [J].
Borisov A.M. ;
Krit B.L. ;
Lyudin V.B. ;
Morozova N.V. ;
Suminov I.V. ;
Apelfeld A.V. .
Surface Engineering and Applied Electrochemistry, 2016, 52 (01) :50-78
[5]   Characterization of Coating Formed on Pure Zirconium by MAO in Yttrium Acetate Tetrahydrate Containing Electrolyte [J].
Cengiz, S. ;
Yazici, M. ;
Gencer, Y. ;
Tarakci, M. .
ACTA PHYSICA POLONICA A, 2015, 127 (04) :1320-1325
[6]   The characterization of the oxide based coating synthesized on pure zirconium by plasma electrolytic oxidation [J].
Cengiz, Sezgin ;
Gencer, Yucel .
SURFACE & COATINGS TECHNOLOGY, 2014, 242 :132-140
[7]   Investigation of Plasma Electrolytic Oxidation (PEO) coatings on a Zr-2 5Nb alloy using high temperature/pressure autoclave and tribological tests [J].
Chen, Ying ;
Nie, X. ;
Northwood, D. O. .
SURFACE & COATINGS TECHNOLOGY, 2010, 205 (06) :1774-1782
[8]   Plasma electrolytic oxidation and corrosion protection of Zircaloy-4 [J].
Cheng, Y. ;
Matykina, E. ;
Arrabal, R. ;
Skeldon, P. ;
Thompson, G. E. .
SURFACE & COATINGS TECHNOLOGY, 2012, 206 (14) :3230-3239
[9]   A stabilization mechanism of zirconia based on oxygen vacancies only [J].
Fabris, S ;
Paxton, AT ;
Finnis, MW .
ACTA MATERIALIA, 2002, 50 (20) :5171-5178
[10]  
Fan Y., 2012, CORROS SCI, V59, P307