Amplifiers of free-space terahertz radiation

被引:13
作者
Kao, Tsung-Yu [1 ,2 ]
Reno, John L. [3 ]
Hu, Qing [2 ]
机构
[1] LongWave Photon LLC, Mountain View, CA 94043 USA
[2] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[3] Sandia Natl Labs, Ctr Integrated Nanotechnol, MS 1303, Albuquerque, NM 87185 USA
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
QUANTUM-CASCADE LASERS;
D O I
10.1364/OPTICA.4.000713
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Amplifiers of free-space radiation are quite useful, especially in spectral ranges where the radiation is weak and sensitive detectors are hard to come by. A preamplification of the said weak radiation signal will significantly boost the S/N ratio in remote sensing and imaging applications. This is especially true in the terahertz (THz) range where the radiation signal is often weak and sensitive detectors require the cooling of liquid helium. Although quantum cascade structures are promising for providing amplification in the terahertz band from 2 to 5 THz, a THz amplifier has been demonstrated in an integrated form, in which the source is in close proximity to the amplifier, which will not be suitable for the aforementioned applications. Here we demonstrate what we believe is a novel approach to achieve significant amplification of free-space THz radiation using an array of short-cavity, surface-emitting THz quantum cascade lasers operating marginally below the lasing threshold as a Fabry-Perot amplifier. This free-space "slow light" amplifier provides 7.5 dB (x5.6) overall gain at similar to 3.1 THz. The proposed devices are suitable for low-noise pre-amplifiers in heterodyne detection systems and for THz imaging systems. With the sub-wavelength pixel size of the array, the reflective amplifier can also be categorized as active metasurface, with the ability to amplify or absorb specific frequency components of the input THz signal. (C) 2017 Optical Society of America
引用
收藏
页码:713 / 716
页数:4
相关论文
共 19 条
[1]   A terahertz pulse emitter monolithically integrated with a quantum cascade laser [J].
Burghoff, David ;
Kao, Tsung-Yu ;
Ban, Dayan ;
Lee, Alan Wei Min ;
Hu, Qing ;
Reno, John .
APPLIED PHYSICS LETTERS, 2011, 98 (06)
[2]   Importance of coherence for electron transport in terahertz quantum cascade lasers [J].
Callebaut, H ;
Hu, Q .
JOURNAL OF APPLIED PHYSICS, 2005, 98 (10)
[3]   Experimental demonstration of frequency-agile terahertz metamaterials [J].
Chen, Hou-Tong ;
O'Hara, John F. ;
Azad, Abul K. ;
Taylor, Antoinette J. ;
Averitt, Richard D. ;
Shrekenhamer, David B. ;
Padilla, Willie J. .
NATURE PHOTONICS, 2008, 2 (05) :295-298
[4]   A review of metasurfaces: physics and applications [J].
Chen, Hou-Tong ;
Taylor, Antoinette J. ;
Yu, Nanfang .
REPORTS ON PROGRESS IN PHYSICS, 2016, 79 (07)
[5]   Integrated terahertz pulse generation and amplification in quantum cascade lasers [J].
Dhillon, S. S. ;
Sawallich, S. ;
Jukam, N. ;
Oustinov, D. ;
Madeo, J. ;
Barbieri, S. ;
Filloux, P. ;
Sirtori, C. ;
Marcadet, X. ;
Tignon, J. .
APPLIED PHYSICS LETTERS, 2010, 96 (06)
[6]  
Ghafouri-Shiraz H., 1996, FUNDAMENTALS LASER D
[7]   Terahertz amplifier based on gain switching in a quantum cascade laser [J].
Jukam, Nathan ;
Dhillon, Sukhdeep S. ;
Oustinov, Dimitri ;
Madeo, Julien ;
Manquest, Christrophe ;
Barbieri, Stefano ;
Sirtori, Carlo ;
Khanna, Suraj P. ;
Linfield, Edmund. H. ;
Davies, A. Giles ;
Tignon, Jerome .
NATURE PHOTONICS, 2009, 3 (12) :715-719
[8]  
Kao TY, 2016, NAT PHOTONICS, V10, P541, DOI [10.1038/NPHOTON.2016.104, 10.1038/nphoton.2016.104]
[9]   Antenna coupled photonic wire lasers [J].
Kao, Tsung-Yu ;
Cai, Xiaowei ;
Lee, Alan W. M. ;
Reno, John L. ;
Hu, Qing .
OPTICS EXPRESS, 2015, 23 (13) :17091-17100
[10]   Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides [J].
Kumar, Sushil ;
Williams, Benjamin S. ;
Qin, Qi ;
Lee, Alan W. M. ;
Hu, Qing ;
Reno, John L. .
OPTICS EXPRESS, 2007, 15 (01) :113-128