Bone Mineralization in Electrospun-Based Bone Tissue Engineering

被引:12
|
作者
Lim, Dong-Jin [1 ]
机构
[1] Univ Alabama Birmingham, Dept Otolaryngol Head & Neck Surg, Birmingham, AL 35294 USA
关键词
bone mineralization; electrospinning; simulated body fluid; bone tissue engineering; ALIGNED POLYMER NANOFIBERS; SIMULATED BODY-FLUID; IN-VITRO; OSTEOGENIC DIFFERENTIATION; COLLAGEN; SCAFFOLDS; FABRICATION; COMPOSITE; GROWTH; MATRIX;
D O I
10.3390/polym14102123
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Increasing the demand for bone substitutes in the management of bone fractures, including osteoporotic fractures, makes bone tissue engineering (BTE) an ideal strategy for solving the constant shortage of bone grafts. Electrospun-based scaffolds have gained popularity in BTE because of their unique features, such as high porosity, a large surface-area-to-volume ratio, and their structural similarity to the native bone extracellular matrix (ECM). To imitate native bone mineralization through which bone minerals are deposited onto the bone matrix, a simple but robust post-treatment using a simulated body fluid (SBF) has been employed, thereby improving the osteogenic potential of these synthetic bone grafts. This study highlights recent electrospinning technologies that are helpful in creating more bone-like scaffolds, and addresses the progress of SBF development. Biomineralized electrospun bone scaffolds are also reviewed, based on the importance of bone mineralization in bone regeneration. This review summarizes the potential of SBF treatments for conferring the biphasic features of native bone ECM architectures onto electrospun-based bone scaffolds.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Fabrication of Gehlenite Nanopowder Containing Electrospun Nanofibers for Bone Tissue Engineering
    Mohsen Doostmohammadi
    Mohammad Mehrasa
    Ashkan Bigham
    Mohammad Rafienia
    Shahram Amini
    Zahra Komeily-Nia
    Pejman Heidarian
    Bijan Nasri-Nasrabadi
    Fibers and Polymers, 2021, 22 : 3281 - 3288
  • [42] Polyphenols-loaded electrospun nanofibers in bone tissue engineering and regeneration
    Iruthayapandi Selestin Raja
    Desingh Raj Preeth
    Mohan Vedhanayagam
    Suong-Hyu Hyon
    Dohyung Lim
    Bongju Kim
    Subramaniyam Rajalakshmi
    Dong-Wook Han
    Biomaterials Research, 25
  • [43] Hydrogel, Electrospun and Composite Materials for Bone/Cartilage and Neural Tissue Engineering
    Niemczyk-Soczynska, Beata
    Zaszczynska, Angelika
    Zabielski, Konrad
    Sajkiewicz, Pawel
    MATERIALS, 2021, 14 (22)
  • [44] Fabrication and characterization of electrospun osteon mimicking scaffolds for bone tissue engineering
    Andric, T.
    Sampson, A. C.
    Freeman, J. W.
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2011, 31 (01): : 2 - 8
  • [45] Design of Boron Nitride/Gelatin Electrospun Nanofibers for Bone Tissue Engineering
    Nagarajan, Sakthivel
    Belaid, Habib
    Pochat-Bohatier, Celine
    Teyssier, Catherine
    Iatsunskyi, Igor
    Coy, Emerson
    Balme, Sebastien
    Cornu, David
    Miele, Philippe
    Kalkura, Narayana S.
    Cavailles, Vincent
    Bechelany, Mikhael
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (39) : 33695 - 33706
  • [46] Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering
    Zhang, Yanzhong
    Venugopal, Jayarama Reddy
    El-Turki, Adel
    Ramakrishna, Seeram
    Su, Bo
    Lim, Chwee Teck
    BIOMATERIALS, 2008, 29 (32) : 4314 - 4322
  • [47] Electrospun silk-BMP-2 scaffolds for bone tissue engineering
    Li, CM
    Vepari, C
    Jin, HJ
    Kim, HJ
    Kaplan, DL
    BIOMATERIALS, 2006, 27 (16) : 3115 - 3124
  • [48] Electrospun nanofibrous 3D scaffold for bone tissue engineering
    Eap, Sandy
    Ferrand, Alice
    Palomares, Carlos Mendoza
    Hebraud, Anne
    Stoltz, Jean-Francois
    Mainard, Didier
    Schlatter, Guy
    Benkirane-Jessel, Nadia
    BIO-MEDICAL MATERIALS AND ENGINEERING, 2012, 22 (1-3) : 137 - 141
  • [49] The electrospun poly(ε-caprolactone)/fluoridated hydroxyapatite nanocomposite for bone tissue engineering
    Johari, Narges
    Fathi, Mohammadhossein
    Fereshteh, Zeinab
    Kargozar, Saeid
    Samadikuchaksaraei, Ali
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2020, 31 (05) : 1019 - 1026
  • [50] ELECTROSPUN POLYCAPROLACTONE-NANODIAMOND COMPOSITE SCAFFOLDS FOR BONE TISSUE ENGINEERING
    Salaam, Amanee D.
    Dean, Derrick
    NEMB2010: PROCEEDINGS OF THE ASME FIRST GLOBAL CONGRESS ON NANOENGINEERING FOR MEDICINE AND BIOLOGY - 2010, 2010, : 367 - 370