Weak linking theorems and Schrodinger equations with critical Sobolev exponent

被引:0
作者
Schechter, M [1 ]
Zou, WM
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
linking; Schrodinger equations; critical Sobolev exponent;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we establish a variant and generalized weak linking theorem, which contains more delicate result and insures the existence of bounded Palais-Smale sequences of a strongly indefinite functional. The abstract result will be used to study the semilinear Schrodinger equation - Deltau + V (x) u = K(x) \u\(2*-2) u+ g(x, u); u is an element of W-1,W-2(R-N), where N greater than or equal to 4; V; K; g are periodic in x(j) for 1 less than or equal to j less than or equal to N and 0 is in a gap of the spectrum of - + V; K > 0. If 0 < g(x; u) u <= c\u\(2*) for an appropriate constant c, we show that this equation has a nontrivial solution.
引用
收藏
页码:601 / 619
页数:19
相关论文
共 32 条
[1]   EXISTENCE OF SOLUTIONS FOR SEMILINEAR ELLIPTIC-EQUATIONS WITH INDEFINITE LINEAR PART [J].
ALAMA, S ;
LI, YY .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 96 (01) :89-115
[2]   ON MULTIBUMP BOUND-STATES FOR CERTAIN SEMILINEAR ELLIPTIC-EQUATIONS [J].
ALAMA, S ;
LI, YY .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1992, 41 (04) :983-1026
[3]   On a nonlinear Schrodinger equation with periodic potential [J].
Bartsch, T ;
Ding, YH .
MATHEMATISCHE ANNALEN, 1999, 313 (01) :15-37
[4]   EXISTENCE OF POSITIVE SOLUTIONS OF THE EQUATION -DELTA-U+A(X)U=U(N+2)/(N-2) IN RN [J].
BENCI, V ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 88 (01) :90-117
[5]   EXISTENCE OF A NONTRIVIAL SOLUTION TO A STRONGLY INDEFINITE SEMILINEAR EQUATION [J].
BUFFONI, B ;
JEANJEAN, L ;
STUART, CA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 119 (01) :179-186
[6]  
CHABROWSKI J, SEMILINEAR SCHODINGE
[7]  
CHABROWSKI J, 1998, TOPOL METHOD NONL AN, V12, P245
[8]  
Dunford N., 1967, Linear Operators, Part I: General Theory
[9]   SOLUTIONS IN SPECTRAL GAPS FOR A NONLINEAR EQUATION OF SCHRODINGER TYPE [J].
JEANJEAN, L .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 112 (01) :53-80
[10]   On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on RN [J].
Jeanjean, L .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 :787-809