Global attractor of the three-dimensional primitive equations of large-scale ocean and atmosphere dynamics

被引:17
作者
You, Bo [1 ]
Li, Fang [2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
[2] Xidian Univ, Sch Math & Stat, Xian 710126, Shaanxi, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2018年 / 69卷 / 05期
基金
美国国家科学基金会;
关键词
Global attractor; Primitive equations; Norm-to-weak semigroup; Asymptotic a priori estimate; WELL-POSEDNESS; EXISTENCE; REGULARITY;
D O I
10.1007/s00033-018-1007-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The objective of this paper is to study the existence of a global attractor in for the three-dimensional autonomous primitive equations of large-scale ocean and atmosphere dynamics. According to the regularity results for the Stokes-type system in cylinder-type domains established by Ziane (Appl Anal 58(3-4):263-292, 1995), we can only obtain the existence of an absorbing set in such that the compactness of the semigroup in cannot be proved by the Sobolev compactness embedding theorem. Therefore, in order to obtain the existence of a global attractor in we carry out some a priori estimates of strong solutions to establish the asymptotical compactness of the semigroup in by asymptotic a priori estimate.
引用
收藏
页数:13
相关论文
共 46 条
[1]  
[Anonymous], 1992, Studies in Mathematics and its Applications
[2]  
[Anonymous], 2012, Infinite-dimensional dynamical systems in mechanics and physics, DOI 10.1007/978-1-4684-0313-8
[3]   Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics [J].
Cao, Chongsheng ;
Titi, Edriss S. .
ANNALS OF MATHEMATICS, 2007, 166 (01) :245-267
[4]  
Chen CS, 2003, J ATMOS OCEAN TECH, V20, P159, DOI 10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO
[5]  
2
[6]  
Chepyzhov VV., 2002, Attractors for Equations of Mathematical Physics
[7]   Global existence and regularity for the 3D stochastic primitive equations of the ocean and atmosphere with multiplicative white noise [J].
Debussche, A. ;
Glatt-Holtz, N. ;
Temam, R. ;
Ziane, M. .
NONLINEARITY, 2012, 25 (07) :2093-2118
[8]   Some results for the primitive equations with physical boundary conditions [J].
Evans, Lawrence Christopher ;
Gastler, Robert .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (06) :1729-1744
[9]  
Ewald BD, 2001, DISCRET CONTIN DYN S, V7, P343
[10]  
Gonzalez F. G, 2017, APPL NUMER MATH, V111, P219, DOI DOI 10.1016/j.apnum.2016.09.011