Learning Latent Semantic Attributes for Zero-Shot Object Detection

被引:6
作者
Wang, Kang [1 ,2 ]
Zhang, Lu [1 ,2 ]
Tan, Yifan [1 ,2 ]
Zhao, Jiajia [3 ]
Zhou, Shuigeng [1 ,2 ]
机构
[1] Fudan Univ, Shanghai Key Lab Intelligent Informat Proc, Shanghai 200433, Peoples R China
[2] Fudan Univ, Sch Comp Sci, Shanghai 200433, Peoples R China
[3] Beijing Electromech Engineer Inst, Sci & Technol Complex Syst Control & Intelligent, Beijing, Peoples R China
来源
2020 IEEE 32ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI) | 2020年
关键词
Deep learning; Zero-shot object detection; Semantic space; Latent attributes;
D O I
10.1109/ICTAI50040.2020.00045
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Zero-shot Object Detection (ZSD) aims to locate and classify instances of unseen categories. Existing methods focus on learning the mapping from visual space to semantic space, while the learning of discriminative representations for ZSD has not gained enough attention. In this paper, we demonstrate the necessity to learn discriminative semantic representations for ZSD, and propose a new end-to-end framework for this task. Our framework is able to learn discriminative semantic representations in an augmented space introduced for both user-defined and latent attributes, and refine the user-defined attributes with the help of unseen and external classes. The proposed method is extensively evaluated on two challenging ZSD datasets, and the experimental results show that our method significantly outperforms several existing methods.
引用
收藏
页码:230 / 237
页数:8
相关论文
共 27 条
  • [1] Zero-Shot Object Detection
    Bansal, Ankan
    Sikka, Karan
    Sharma, Gaurav
    Chellappa, Rama
    Divakaran, Ajay
    [J]. COMPUTER VISION - ECCV 2018, PT I, 2018, 11205 : 397 - 414
  • [2] Dai J, 2016, PROCEEDINGS 2016 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), P1796, DOI 10.1109/ICIT.2016.7475036
  • [3] Demirel Berkan, 2018, ARXIV PREPRINT ARXIV
  • [4] Ding Zhengming., 2019, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, P6191
  • [5] The Pascal Visual Object Classes (VOC) Challenge
    Everingham, Mark
    Van Gool, Luc
    Williams, Christopher K. I.
    Winn, John
    Zisserman, Andrew
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) : 303 - 338
  • [6] Farhadi A, 2009, PROC CVPR IEEE, P1778, DOI 10.1109/CVPRW.2009.5206772
  • [7] Learning Discriminative Latent Attributes for Zero-Shot Classification
    Jiang, Huajie
    Wang, Ruiping
    Shan, Shiguang
    Yang, Yi
    Chen, Xilin
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 4233 - 4242
  • [8] Joseph RK, 2016, CRIT POL ECON S ASIA, P1
  • [9] Lampert CH, 2009, PROC CVPR IEEE, P951, DOI 10.1109/CVPRW.2009.5206594
  • [10] Discriminative Learning of Latent Features for Zero-Shot Recognition
    Li, Yan
    Zhang, Junge
    Zhang, Jianguo
    Huang, Kaiqi
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 7463 - 7471