Expression profile of PIN, AUX/LAX and PGP auxin transporter gene families in Sorghum bicolor under phytohormone and abiotic stress

被引:118
作者
Shen, ChenJia [1 ]
Bai, YouHuang [2 ,3 ]
Wang, SuiKang [1 ]
Zhang, SaiNa [1 ]
Wu, YunRong [1 ]
Chen, Ming [1 ,2 ,3 ]
Jiang, DeAn [1 ]
Qi, YanHua [1 ]
机构
[1] Zhejiang Univ, State Key Lab Plant Physiol & Biochem, Hangzhou 310058, Zhejiang, Peoples R China
[2] Zhejiang Univ, Dept Bioinformat, Hangzhou 310058, Zhejiang, Peoples R China
[3] Zhejiang Univ, James D Watson Inst Genome Sci, Hangzhou 310058, Zhejiang, Peoples R China
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
abiotic stresses; AUX; LAX; PGP; PIN; Sorghum bicolor; MULTIPLE SEQUENCE ALIGNMENT; POLAR TRANSPORT; ABC TRANSPORTER; ARABIDOPSIS; PROTEIN; PERMEASE; EFFLUX; GRADIENTS; SYSTEM; GROWTH;
D O I
10.1111/j.1742-4658.2010.07706.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Auxin is transported by the influx carriers auxin resistant 1/like aux1 (AUX/LAX), and the efflux carriers pin-formed (PIN) and P-glycoprotein (PGP), which play a major role in polar auxin transport. Several auxin transporter genes have been characterized in dicotyledonous Arabidopsis, but most are unknown in monocotyledons, especially in sorghum. Here, we analyze the chromosome distribution, gene duplication and intron/exon of SbPIN, SbLAX and SbPGP gene families, and examine their phylogenic relationships in Arabidopsis, rice and sorghum. Real-time PCR analysis demonstrated that most of these genes were differently expressed in the organs of sorghum. SbPIN3 and SbPIN9 were highly expressed in flowers, SbLAX2 and SbPGP17 were mainly expressed in stems, and SbPGP7 was strongly expressed in roots. This suggests that individual genes might participate in specific organ development. The expression profiles of these gene families were analyzed after treatment with: (a) the phytohormones indole-3-acetic acid and brassinosteroid; (b) the polar auxin transport inhibitors 1-naphthoxyacetic acids, 1-naphthylphthalamic acid and 2,3,5-triiodobenzoic acid; and (c) abscissic acid and the abiotic stresses of high salinity and drought. Most of the auxin transporter genes were strongly induced by indole-3-acetic acid and brassinosteroid, providing new evidence for the synergism of these phytohormones. Interestingly, most genes showed similar trends in expression under polar auxin transport inhibitors and each also responded to abscissic acid, salt and drought. This study provides new insights into the auxin transporters of sorghum.
引用
收藏
页码:2954 / 2969
页数:16
相关论文
共 78 条
[1]   ProtTest: selection of best-fit models of protein evolution [J].
Abascal, F ;
Zardoya, R ;
Posada, D .
BIOINFORMATICS, 2005, 21 (09) :2104-2105
[2]   Auxin influx carriers stabilize phyllotactic patterning [J].
Bainbridge, Katherine ;
Guyomarc'h, Soazig ;
Bayer, Emmanuelle ;
Swarup, Ranjan ;
Bennett, Malcolm ;
Mandel, Therese ;
Kuhlemeier, Cris .
GENES & DEVELOPMENT, 2008, 22 (06) :810-823
[3]   Interactions of PIN and PGP auxin transport mechanisms [J].
Bandyopadhyay, A. ;
Blakeslee, J. J. ;
Lee, O. R. ;
Mravec, J. ;
Sauer, M. ;
Titapiwatanakun, B. ;
Makam, S. N. ;
Bouchard, R. ;
Geisler, M. ;
Martinoia, E. ;
Friml, J. ;
Peer, W. A. ;
Murphy, A. S. .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2007, 35 :137-141
[4]   Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis [J].
Bao, F ;
Shen, JJ ;
Brady, SR ;
Muday, GK ;
Asami, T ;
Yang, ZB .
PLANT PHYSIOLOGY, 2004, 134 (04) :1624-1631
[5]  
BARAK LS, 1994, J BIOL CHEM, V269, P2790
[6]   Alfin1, a novel zinc-finger protein in alfalfa roots that binds to promoter elements in the salt-inducible MsPRP2 gene [J].
Bastola, DR ;
Pethe, VV ;
Winicov, I .
PLANT MOLECULAR BIOLOGY, 1998, 38 (06) :1123-1135
[7]   Local, efflux-dependent auxin gradients as a common module for plant organ formation [J].
Benková, E ;
Michniewicz, M ;
Sauer, M ;
Teichmann, T ;
Seifertová, D ;
Jürgens, G ;
Friml, J .
CELL, 2003, 115 (05) :591-602
[8]   Arabidopsis AUX1 gene: A permease-like regulator of root gravitropism [J].
Bennett, MJ ;
Marchant, A ;
Green, HG ;
May, ST ;
Ward, SP ;
Millner, PA ;
Walker, AR ;
Schulz, B ;
Feldmann, KA .
SCIENCE, 1996, 273 (5277) :948-950
[9]   Auxin transport [J].
Blakeslee, JJ ;
Peer, WA ;
Murphy, AS .
CURRENT OPINION IN PLANT BIOLOGY, 2005, 8 (05) :494-500
[10]   ZmPIN1a and ZmPIN1b encode two novel putative candidates for polar auxin transport and plant architecture determination of maize [J].
Carraro, Nicola ;
Forestan, Cristian ;
Canova, Sabrina ;
Traas, Jan ;
Varotto, Serena .
PLANT PHYSIOLOGY, 2006, 142 (01) :254-264