Proximal methods for a class of bilevel monotone equilibrium problems

被引:83
作者
Moudafi, Abdellatif [1 ]
机构
[1] Univ Antilles Guyane, Dept Sci Interfac, CEREGMIA, F-97230 Martinique, France
关键词
Bilevel problem; Variational inequality; Monotonicity; Equilibrium problem; Proximal method; DESCENT METHOD; CONVERGENCE;
D O I
10.1007/s10898-009-9476-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider a bilevel problem involving two monotone equilibrium bifunctions and we show that this problem can be solved by a simple proximal method. Under mild conditions, the weak convergence of the sequences generated by the algorithm is obtained. Using this result we obtain corollaries which improve several corresponding results in this field.
引用
收藏
页码:287 / 292
页数:6
相关论文
共 19 条
[11]  
Moudafi A., 1999, J Nat Geom, V15, P91
[12]  
MUU LD, LINEARLY CONVE UNPUB
[13]   A bundle method for solving equilibrium problems [J].
Nguyen, T. T. V. ;
Strodiot, J. J. ;
Nguyen, V. H. .
MATHEMATICAL PROGRAMMING, 2009, 116 (1-2) :529-552
[15]  
Solodov M, 2007, J CONVEX ANAL, V14, P227
[16]   Error bounds for proximal point subproblems and associated inexact proximal point algorithms [J].
Solodov, MV ;
Svaiter, BF .
MATHEMATICAL PROGRAMMING, 2000, 88 (02) :371-389
[17]   Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces [J].
Takahashi, Satoru ;
Takahashi, Wataru .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 331 (01) :506-515
[18]   Extragradient algorithms extended to equilibrium problems [J].
Tran, D. Quoc ;
Le Dung, M. ;
Nguyen, Van Hien .
OPTIMIZATION, 2008, 57 (06) :749-776
[19]   Hybrid steepest descent method for variational inequality problem over the fixed point set of certain quasi-nonexpansive mappings [J].
Yamada, I ;
Ogura, N .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2004, 25 (7-8) :619-655