Proximal methods for a class of bilevel monotone equilibrium problems

被引:83
作者
Moudafi, Abdellatif [1 ]
机构
[1] Univ Antilles Guyane, Dept Sci Interfac, CEREGMIA, F-97230 Martinique, France
关键词
Bilevel problem; Variational inequality; Monotonicity; Equilibrium problem; Proximal method; DESCENT METHOD; CONVERGENCE;
D O I
10.1007/s10898-009-9476-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider a bilevel problem involving two monotone equilibrium bifunctions and we show that this problem can be solved by a simple proximal method. Under mild conditions, the weak convergence of the sequences generated by the algorithm is obtained. Using this result we obtain corollaries which improve several corresponding results in this field.
引用
收藏
页码:287 / 292
页数:6
相关论文
共 19 条
[1]  
[Anonymous], 1996, MATH PROGRAMS EQUILI, DOI DOI 10.1017/CBO9780511983658
[2]   A weak-to-strong convergence principle for Fejer-monotone methods in Hilbert spaces [J].
Bauschke, HH ;
Combettes, PL .
MATHEMATICS OF OPERATIONS RESEARCH, 2001, 26 (02) :248-264
[3]  
Blum E., 1994, Math. Stud., V63, P127
[4]   Proximal point algorithm controlled by a slowly vanishing term: Applications to hierarchical minimization [J].
Cabot, A .
SIAM JOURNAL ON OPTIMIZATION, 2005, 15 (02) :555-572
[5]   Equilibrium Problems with Generalized Monotone Bifunctions and Applications to Variational Inequalities [J].
O. Chaldi ;
Z. Chbani ;
H. Riahi .
Journal of Optimization Theory and Applications, 2000, 105 (2) :299-323
[6]  
Combettes PL, 2005, J NONLINEAR CONVEX A, V6, P117
[7]   Application of the proximal point method to nonmonotone equilibrium problems [J].
Konnov, IV .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2003, 119 (02) :317-333
[8]  
MARINO G, 2006, J MATH ANAL APPL
[9]  
Mastroeni G., 2000, Publicatione del Dipartimento di Mathematica dell, V3, P1244
[10]  
Moudafi A, 1999, LECT NOTES ECON MATH, V477, P187