Fractional p-Laplacian evolution equations

被引:89
作者
Mazon, Jose M. [1 ]
Rossi, Julio D. [2 ,3 ]
Toledo, Julian [1 ]
机构
[1] Univ Valencia, Dept Anal Matemat, Valencia, Spain
[2] Consejo Nacl Invest Cient & Tecn, Ciudad Univ,Pab 1, RA-1428 Buenos Aires, DF, Argentina
[3] FCEyN UBA, Dept Matemat, Ciudad Univ,Pab 1, RA-1428 Buenos Aires, DF, Argentina
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2016年 / 105卷 / 06期
关键词
Fractional Sobolev spaces; p-Laplacian; Dirichlet problem; Cauchy problem; Neumann problem;
D O I
10.1016/j.matpur.2016.02.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the fractional p-Laplacian evolution equation given by u(t) (t, x) = integral(A) 1/vertical bar x - y vertical bar N+ sp vertical bar u(t, y) - u (t, x)vertical bar(p-2)(u(t, y) - u(t, x) )dy for x is an element of Omega, t > 0, 0 < s < 1, p >= 1. In a bounded domain Omega we deal with the Dirichlet problem by taking A = R-N and u = 0 in R-N \ Omega, and the Neumann problem by taking A = Omega. We include here the limit case p = 1 that has the extra difficulty of giving a meaning to u(y)-u(x)/vertical bar u(v)-u(x) when u(y) = u(x). We also consider the Cauchy problem in the whole R-N by taking A = Omega = R-N. We find existence and uniqueness of strong solutions for each of the above mentioned problems. We also study the asymptotic behaviour of these solutions as t -> infinity. Finally, we recover the local p-Laplacian evolution equation with Dirichlet or Neumann boundary conditions, and for the Cauchy problem, by taking the limit as s -> 1 in the nonlocal problems multiplied by a suitable scaling constant. (C) 2016 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:810 / 844
页数:35
相关论文
共 28 条
[1]  
Ambrosio L., 2000, Oxford Mathematical Monographs
[2]   A nonlocal p-Laplacian evolution equation with Neumann boundary conditions [J].
Andreu, F. ;
Mazon, J. M. ;
Rossi, J. D. ;
Toledo, J. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 90 (02) :201-227
[3]   A NONLOCAL p-LAPLACIAN EVOLUTION EQUATION WITH NONHOMOGENEOUS DIRICHLET BOUNDARY CONDITIONS [J].
Andreu, F. ;
Mazon, J. M. ;
Rossi, J. D. ;
Toledo, J. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (05) :1815-1851
[4]  
Andreu F., 2004, Progress in Mathematics, V223
[5]  
Andreu F., 2010, Mathematical Surveys and Monographs American Mathematical Society, V165
[6]  
Attouch H., 1979, Ann. Math. Pura Appl., V120, P35
[7]  
BENILAN P, 1991, LECT NOTES PURE APPL, V135, P41
[8]  
Bertoin J., 1996, Cambridge Tracts in Mathematics, V121
[9]   Non-local gradient dependent operators [J].
Bjorland, C. ;
Caffarelli, L. ;
Figalli, A. .
ADVANCES IN MATHEMATICS, 2012, 230 (4-6) :1859-1894
[10]   Limiting embedding theorems for Ws,p,p when s ↑ 1 and applications [J].
Bourgain, J ;
Brezis, H ;
Mironescu, P .
JOURNAL D ANALYSE MATHEMATIQUE, 2002, 87 (1) :77-101