Layer-by-layer processed binary all-polymer solar cells with efficiency over 16% enabled by finely optimized morphology

被引:100
作者
Zhang, Yue [1 ]
Wu, Baoqi [1 ]
He, Yakun [2 ]
Deng, Wanyuan [1 ]
Li, Jingwen [1 ]
Li, Junyu [3 ]
Qiao, Nan [4 ]
Xing, Yifan [4 ]
Yuan, Xiyue [1 ]
Li, Ning [2 ]
Brabec, Christoph J. [2 ]
Wu, Hongbin [1 ]
Lu, Guanghao [4 ]
Duan, Chunhui [1 ,5 ,6 ]
Huang, Fei [1 ]
Cao, Yong [1 ]
机构
[1] South China Univ Technol, Inst Polymer Optoelect Mat & Devices, State Key Lab Luminescent Mat & Devices, Guangzhou 510640, Peoples R China
[2] Friedrich Alexander Univ Erlangen Nurnberg, Inst Mat Elect & Energy Technol I MEET, Dept Mat Sci & Engn, Martensstr 7, D-91058 Erlangen, Germany
[3] Eindhoven Univ Technol, Mol Mat & Nanosyst, Inst Complex Mol Syst, NL-5600 MB Eindhoven, Netherlands
[4] Xi An Jiao Tong Univ, Frontier Inst Sci & Technol, Xian 710054, Peoples R China
[5] Guangdong Hong Kong Macao Joint Lab Optoelect & M, Guangzhou 510640, Peoples R China
[6] Dalian Univ Technol, State Key Lab Fine Chem, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
All-polymer solar cells; High-efficiency; Layer-by-layer processing; Active layer morphology; Vertical composition distribution; PERFORMANCE; ACCEPTOR; ORIENTATION; GENERATION; STABILITY; PACKING;
D O I
10.1016/j.nanoen.2021.106858
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Optimal active layer morphology is a prerequisite for high-efficiency all-polymer solar cells (all-PSCs). Herein, we report that the vertical phase separation as well as microstructures of the polymer donor and acceptor can be finely optimized in layer-by-layer (LbL) processed all-PSCs. By using 1-chloronaphthalene as the solvent additive during the deposition of the polymer acceptor in the top layer and applying thermal annealing on the entire active layer, bulk-heterojunction like morphology with favorable vertical composition distribution, improved lamellar ordering of the polymer donor (PBDB-T), and the formation of polymer fibrils of the polymer acceptor (PYT) have been realized simultaneously. This favorable morphology led to greatly enhanced exciton splitting efficiency, reduced trap density, improved charge transport, and suppressed charge recombination loss. As a result, the LbL processed all-PSCs of PBDB-T/PYT afforded a power conversion efficiency (PCE) of 16.05%, which is one of the highest PCEs for binary all-PSCs. Moreover, a fill factor (FF) of 0.77 has been obtained, which is the highest value for all-PSCs based on polymerized small molecule acceptors up to date. This work demonstrates an effective strategy for morphology optimization of LbL processed all-PSCs, which will greatly contribute to efficiency breakthrough.
引用
收藏
页数:11
相关论文
共 66 条
[11]   Highlight The new era for organic solar cells: non-fullerene small molecular acceptors [J].
Duan, Chunhui ;
Ding, Liming .
SCIENCE BULLETIN, 2020, 65 (15) :1231-1233
[12]   Over 14% efficiency all-polymer solar cells enabled by a low bandgap polymer acceptor with low energy loss and efficient charge separation [J].
Fan, Qunping ;
An, Qiaoshi ;
Lin, Yuanbao ;
Xia, Yuxin ;
Li, Qian ;
Zhang, Ming ;
Su, Wenyan ;
Peng, Wenhong ;
Zhang, Chunfeng ;
Liu, Feng ;
Hou, Lintao ;
Zhu, Weiguo ;
Yu, Donghong ;
Xiao, Min ;
Moons, Ellen ;
Zhang, Fujun ;
Anthopoulos, Thomas D. ;
Inganas, Olle ;
Wang, Ergang .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (12) :5017-5027
[13]   A Non-Conjugated Polymer Acceptor for Efficient and Thermally Stable All-Polymer Solar Cells [J].
Fan, Qunping ;
Su, Wenyan ;
Chen, Shanshan ;
Liu, Tao ;
Zhuang, Wenliu ;
Ma, Ruijie ;
Wen, Xin ;
Yin, Zhihong ;
Luo, Zhenghui ;
Guo, Xia ;
Hou, Lintao ;
Moth-Poulsen, Kasper ;
Li, Yu ;
Zhang, Zhiguo ;
Yang, Changduk ;
Yu, Donghong ;
Yan, He ;
Zhang, Maojie ;
Wang, Ergang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (45) :19835-19840
[14]   Mechanically Robust All-Polymer Solar Cells from Narrow Band Gap Acceptors with Hetero-Bridging Atoms [J].
Fan, Qunping ;
Su, Wenyan ;
Chen, Shanshan ;
Kim, Wansun ;
Chen, Xiaobin ;
Lee, Byongkyu ;
Liu, Tao ;
Mendez-Romero, Ulises A. ;
Ma, Ruijie ;
Yang, Tao ;
Zhuang, Wenliu ;
Li, Yu ;
Li, Yaowen ;
Kim, Taek-Soo ;
Hou, Lintao ;
Yang, Changduk ;
Yan, He ;
Yu, Donghong ;
Wang, Ergang .
JOULE, 2020, 4 (03) :658-672
[15]   Application of an A-A'-A-Containing Acceptor Polymer in Sequentially Deposited All-Polymer Solar Cells [J].
Fang, Yuan ;
Jin, Hui ;
Raynor, Aaron ;
Wang, Xiao ;
Shaw, Paul E. ;
Kopidakis, Nikos ;
McNeill, Christopher R. ;
Burn, Paul L. .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (28) :24046-24054
[16]   A Generally Applicable Approach Using Sequential Deposition to Enable Highly Efficient Organic Solar Cells [J].
Fu, Huiting ;
Gao, Wei ;
Li, Yuxiang ;
Lin, Francis ;
Wu, Xin ;
Son, Jae Hoon ;
Luo, Jingdong ;
Woo, Han Young ;
Zhu, Zonglong ;
Jen, Alex K. -Y. .
SMALL METHODS, 2020, 4 (12)
[17]   Charge carrier traps in organic semiconductors: a review on the underlying physics and impact on electronic devices [J].
Haneef, Hamna F. ;
Zeidell, Andrew M. ;
Jurchescu, Oana D. .
JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (03) :759-787
[18]   All-polymer solar cells with efficiency approaching 16% enabled using a dithieno[3′,2′:3,4;2′′,3′′:5,6]benzo[1,2-c][1,2,5]thiadiazole (fDTBT)-based polymer donor [J].
Jia, Tao ;
Zhang, Jiabin ;
Zhang, Kai ;
Tang, Haoran ;
Dong, Sheng ;
Tan, Ching-Hong ;
Wang, Xiaohui ;
Huang, Fei .
JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (14) :8975-8983
[19]   14.4% efficiency all-polymer solar cell with broad absorption and low energy loss enabled by a novel polymer acceptor [J].
Jia, Tao ;
Zhang, Jiabin ;
Zhong, Wenkai ;
Liang, Yuanying ;
Zhang, Kai ;
Dong, Sheng ;
Ying, Lei ;
Liu, Feng ;
Wang, Xiaohui ;
Huang, Fei ;
Cao, Yong .
NANO ENERGY, 2020, 72
[20]   Pseudo-bilayer architecture enables high-performance organic solar cells with enhanced exciton diffusion length [J].
Jiang, Kui ;
Zhang, Jie ;
Peng, Zhengxing ;
Lin, Francis ;
Wu, Shengfan ;
Li, Zhen ;
Chen, Yuzhong ;
Yan, He ;
Ade, Harald ;
Zhu, Zonglong ;
Jen, Alex K. -Y. .
NATURE COMMUNICATIONS, 2021, 12 (01)