Enabling Stable Lithium Metal Anode via 3D Inorganic Skeleton with Superlithiophilic Interphase

被引:179
作者
Fan, Lei [1 ]
Li, Siyuan [1 ]
Liu, Lei [2 ]
Zhang, Weidong [1 ]
Gao, Lina [3 ]
Fu, Yao [3 ]
Chen, Fang [3 ]
Li, Jing [1 ]
Zhuang, Houlong L. [2 ]
Lu, Yingying [1 ]
机构
[1] Zhejiang Univ, Coll Chem & Biol Engn, Inst Pharmaceut Engn, State Key Lab Chem Engn, Hangzhou 310027, Zhejiang, Peoples R China
[2] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA
[3] Zhejiang Univ, Dept Chem, Hangzhou 310027, Zhejiang, Peoples R China
基金
国家重点研发计划;
关键词
Al2O3; skeleton; lithium dendrite suppression; lithium metal batteries; superlithiophilic interphase; DEPOSITION; LIQUID; HOST;
D O I
10.1002/aenm.201802350
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The lithium metal battery (LMB) is among the most sought-after battery chemistries for high-energy storage devices. However, LMBs usually undergo uncontrollable lithium deposition and severe side reactions, which significantly impede their practical applications. Herein, a stable Al2O3-based inorganic framework with superlithiophilic lithium aluminum oxide (Li-Al-O) interphase is created via reacting Li with Al2O3 nanoparticles. The Al2O3-based inorganic framework can serve as a stable Li "host," reducing the volume expansion during cell cycling. Moreover, the strong interaction between Li-Al-O interphase and Li+ can redistribute Li+ and reduce the ion concentration gradient near surface protrusion, thus reducing uneven lithium electrodeposition. From galvanostatic measurements, symmetric cells with the 3D Al2O3-hybrid electrode can operate under an ultrahigh current density of 8 mA cm(-2) over 480 cycles. When used in full cells, it improves the capacity retention of Li/LiFePO4 from 78.4% to 93.6% after 200 cycles and enables long-term operation of Li/Li4Ti5O12 for over 1200 cycles.
引用
收藏
页数:8
相关论文
共 34 条
[1]   Vacuum distillation derived 3D porous current collector for stable lithium-metal batteries [J].
An, Yongling ;
Fei, Huifang ;
Zeng, Guifang ;
Xu, Xiaoyan ;
Ci, Lijie ;
Xi, Baojuan ;
Xiong, Shenglin ;
Feng, Jinkui ;
Qian, Yitai .
NANO ENERGY, 2018, 47 :503-511
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Dendritic growth mechanisms in lithium/polymer cells [J].
Brissot, C ;
Rosso, M ;
Chazalviel, JN ;
Lascaud, S .
JOURNAL OF POWER SOURCES, 1999, 81 :925-929
[4]   ELECTROCHEMICAL ASPECTS OF THE GENERATION OF RAMIFIED METALLIC ELECTRODEPOSITS [J].
CHAZALVIEL, JN .
PHYSICAL REVIEW A, 1990, 42 (12) :7355-7367
[5]   Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes [J].
Chen, Kuan-Hung ;
Wood, Kevin N. ;
Kazyak, Eric ;
LePage, William S. ;
Davis, Andrew L. ;
Sanchez, Adrian J. ;
Dasgupta, Neil P. .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (23) :11671-11681
[6]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[7]   The path towards sustainable energy [J].
Chu, Steven ;
Cui, Yi ;
Liu, Nian .
NATURE MATERIALS, 2017, 16 (01) :16-22
[8]   Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism [J].
Ding, Fei ;
Xu, Wu ;
Graff, Gordon L. ;
Zhang, Jian ;
Sushko, Maria L. ;
Chen, Xilin ;
Shao, Yuyan ;
Engelhard, Mark H. ;
Nie, Zimin ;
Xiao, Jie ;
Liu, Xingjiang ;
Sushko, Peter V. ;
Liu, Jun ;
Zhang, Ji-Guang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (11) :4450-4456
[9]   Stable Lithium Electrodeposition at Ultra-High Current Densities Enabled by 3D PMF/Li Composite Anode [J].
Fan, Lei ;
Zhuang, Houlong L. ;
Zhang, Weidong ;
Fu, Yao ;
Liao, Zhihao ;
Lu, Yingying .
ADVANCED ENERGY MATERIALS, 2018, 8 (15)
[10]   Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries [J].
Fan, Lei ;
Wei, Shuya ;
Li, Siyuan ;
Li, Qi ;
Lu, Yingying .
ADVANCED ENERGY MATERIALS, 2018, 8 (11)