Adaptive sparse polynomial chaos expansions for global sensitivity analysis based on support vector regression

被引:105
|
作者
Cheng, Kai [1 ]
Lu, Zhenzhou [1 ]
机构
[1] Northwestern Polytech Univ, Sch Aeronaut, Xian 710072, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Support vector regression; Sparse polynomial chaos expansion; Global sensitivity analysis; Adaptive kernel function; PARTICLE SWARM OPTIMIZATION; MACHINES; MODELS; SELECTION; INDEXES;
D O I
10.1016/j.compstruc.2017.09.002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In the context of uncertainty analysis, Polynomial chaos expansion (PCE) has been proven to be a powerful tool for developing meta-models in a wide range of applications, especially for sensitivity analysis. But the computational cost of classic PCE grows exponentially with the size of the input variables. An efficient approach to address this problem is to build a sparse PCE. In this paper, a full PCE meta-model is first developed based on support vector regression (SVR) technique using an orthogonal polynomials kernel function. Then an adaptive algorithm is proposed to select the significant basis functions from the kernel function. The selection criterion is based on the variance contribution of each term to the model output. In the adaptive algorithm, an elimination procedure is used to delete the nonsignificant bases, and a selection procedure is used to select the important bases. Due to the structural risk minimization principle employing by SVR model, the proposed method provides better generalization ability compared to the common least square regression algorithm. The proposed method is examined by several examples and the global sensitivity analysis is performed. The results show that the proposed method establishes accurate meta-model for global sensitivity analysis of complex models. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:86 / 96
页数:11
相关论文
共 50 条
  • [31] Global sensitivity analysis using polynomial chaos expansion enhanced Gaussian process regression method
    Shang, Xiaobing
    Zhang, Zhi
    Fang, Hai
    Jiang, Lichao
    Wang, Lipeng
    ENGINEERING WITH COMPUTERS, 2024, 40 (02) : 1231 - 1246
  • [32] Sparse polynomial chaos expansion based on D-MORPH regression
    Cheng, Kai
    Lu, Zhenzhou
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 323 : 17 - 30
  • [33] Distribution-based global sensitivity analysis in case of correlated input parameters using polynomial chaos expansions
    Caniou, Y.
    Sudret, B.
    APPLICATIONS OF STATISTICS AND PROBABILITY IN CIVIL ENGINEERING, 2011, : 695 - 702
  • [34] Optimal sparse polynomial chaos expansion for arbitrary probability distribution and its application on global sensitivity analysis
    Cao, Lixiong
    Liu, Jie
    Jiang, Chao
    Liu, Guangzhao
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 399
  • [35] Development of a Sparse Polynomial Chaos Expansions Method for Parameter Uncertainty Analysis
    Wang, C. X.
    Liu, J.
    Li, Y. P.
    Zhao, J.
    Kong, X. M.
    4TH INTERNATIONAL CONFERENCE ON ENVIRONMENTAL ENGINEERING AND SUSTAINABLE DEVELOPMENT (CEESD 2019), 2020, 435
  • [36] Uncertainty and multi-criteria global sensitivity analysis of structural systems using acceleration algorithm and sparse polynomial chaos expansion
    Qian, Jing
    Dong, You
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 163
  • [37] Sparse Polynomial Chaos Expansions: Literature Survey and Benchmark
    Luethen, Nora
    Marelli, Stefano
    Sudret, Bruno
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (02) : 593 - 649
  • [38] Hybrid metamodel of radial basis function and polynomial chaos expansions with orthogonal constraints for global sensitivity analysis
    Zeping Wu
    Donghui Wang
    Wenjie Wang
    Kun Zhao
    Houcun Zhou
    Weihua Zhang
    Structural and Multidisciplinary Optimization, 2020, 62 : 597 - 617
  • [39] Nonintrusive Polynomial Chaos Expansions for Sensitivity Analysis in Stochastic Differential Equations
    Jimenez, M. Navarro
    Le Maitre, O. P.
    Knio, O. M.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2017, 5 (01): : 378 - 402
  • [40] Adaptive surrogate modeling by ANOVA and sparse polynomial dimensional decomposition for global sensitivity analysis in fluid simulation
    Tang, Kunkun
    Congedo, Pietro M.
    Abgrall, Remi
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 314 : 557 - 589